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Abstract. This paper focuses on the challenges of actuator faults and disturbances
during aircraft operation, which can threaten the safety and reliability of the aircraft.
Fault-tolerant control techniques have been proposed as a solution to enhance system ro-
bustness and ensure stable operation under such conditions. In this paper, a data-driven
approach is adopted, which is based on off-policy learning and can effectively address the
complexity and uncertainty associated with aircraft modeling. Specifically, a linearized
aircraft model is proposed for calm approach air environments, and a fault-tolerant con-
trol law is developed to account for time-varying external disturbances and coupled state
vectors. Theoretical stability analysis is also conducted to establish the stability of the
proposed control law. Finally, a carrier-based aircraft system with actuator fault and
disturbance is simulated to confirm the efficacy of the proposed adaptive fault-tolerant
control law in the final approach phase.
Keywords: Adaptive fault-tolerant control, Data-driven, Off-policy learning, Aircraft
system

1. Introduction. In recent years, extensive research has been conducted on fault-tolerant
control for uncertain systems [1]. Many fault-tolerant control policies have been proposed,
with most being model-based, which limits their applicability [2]. Establishing a system
model is costly and time-consuming [3], making it challenging to implement model-based
control policies when controlled objects are difficult to identify or highly complex.

Due to the influence of wind and other factors, aircraft have complex nonlinear dynam-
ics during approach. Fault-tolerant control for aircraft during approach is always a hot
topic. In [4], control policies for aircraft systems with uncertainty are studied to achieve
better performance at a high angle-of-attack while considering the effects of disturbances.
In [5], a data-driven fault-tolerant control is applied to aircraft to investigate unknown
cooperative quadrotors subject to nonlinearities and multiple actuator faults in quadrotor
dynamics. In [6], off-policy learning is applied to counteracting aircraft disturbances and
explores a switching strategy for altitude control in a variable-sweep wing aircraft. In [7],
a robust adaptive fault-tolerant controller is designed, but it lacks the consideration for
linear external uncertainties.

In this study, we propose a new data-driven adaptive control policy for aircraft systems
which have actuator stuck, outage and loss of effectiveness and coupled state vectors of ex-
ternal disturbances based on off-policy learning. This approach avoids the time-consuming
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process of building a system model required for model-based control strategy design while
overcoming the effects of external disturbances constrained by internal system states. Off-
policy learning approach does not depend on the initial stabilizing controller and enables
online learning based on the collected system input and state. Finally, we evaluate the
effectiveness of our data-driven fault-tolerant control approach using simulations of flight
dynamic systems with actuators failure and coupling system states affected by external
disturbances. All the results demonstrate the validity and applicability of this methodol-
ogy.
The structure of this paper is organized as follows. A review of problem formulation

and preliminaries is provided in Section 2. A novel adaptive controller based on off-policy
learning is designed in Section 3. A numerical example focusing on a carrier-based aircraft
landing system is discussed in Section 4. In the end, the paper is concluded in Section 5.

2. Problem Statement and Preliminaries.

2.1. Linear modeling for aircraft dynamics in final approach. Aircraft has com-
plex dynamics during the approach phase. In this section, the perturbation linear model
of carrier-based aircraft flight dynamics in longitudinal direction is constructed by means
of the general algebraic perturbation linearization scheme [8].
The motion equation of longitudinal aircraft is as follows:

Mv̇I = a2J − L− a3Mg

MvI γ̇ = a1J +D − a4Mg

q̇ = M0/Iy

θ̇ = q

ḣ = vIa3

α = θ − γ

(1)

where M means the mass of aircraft, vI means the scalar aircraft inertial velocity, J
means the scalar total engine thrust, L means the drag, D means the lift, M0 and Iy are
the moment and the moment of inertial in pitch respectively, q is pitch rate, θ is pitch
attitude, α is angle of attack, γ is flight-path angle, h is altitude, a1 = sinα, a2 = cosα,
a3 = sin γ, and a4 = cos γ.
Based on the common coordinate system of flight dynamics, the six-degree-of-freedom

motion equation of aircraft landing configuration is established in the reference frame
attached to the aircraft’s body. The longitudinal 3-DOF motion equation is decoupled as
Equation (1).
The changes in altitude and airspeed during carrier approach and landing have a subtle

impact on engine thrust, which means Jh and Jv can be discarded.
Longitudinal motion equations of the aircraft are expressed as follows after linearization:

d

dt
(∆vI) = −a∗4g∆γ +

a∗2∆J − a∗1J
∗∆α−∆L

M
(2)

d

dt
(∆γ) =

a∗3g∆γ

v∗I
+

a∗1∆J − a∗2J
∗∆α−∆D

Mv∗I
(3)

d

dt
(∆q) =

∆M0

Iy
(4)

d

dt
(∆θ) = ∆q (5)

d

dt
(∆h) = a∗4v

∗
I∆γ + a∗3∆vI (6)

∆α = ∆θ −∆γ (7)
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Define the control derivatives and longitudinal stability [9], the deviations of the aircraft’s
moment and longitudinal forces are shown as Equations (8)-(11).

∆J = Jδp∆δp + Jh∆h+ Jv∆v (8)

∆D = Dα∗∆α +Dh∗∆h+Dδ∗e∆δe +Dv∗∆v +Dδ∗c∆δc (9)

∆L = Lδ∗c∆δc + Lh∗∆h+ Lα∗∆α + Lδ∗e∆δe + Lv∗∆v (10)

∆M0 = M0v∗∆v +M0h∗∆h+M0δ∗e
∆δe +M0q∗∆q +M0α̇∗∆α̇ +M0δ∗c

∆δc

+M0α∗∆α (11)

a∗4g∆θ + (K − xv)∆v − xh∆h− (a∗4g + xα)∆α = xp∆δp + xc∆δc + xe∆δe (12)

−
(
yα +K − a∗3

g

v∗

)
∆α− yh∆h+

(
−a∗3

g

v∗
+K

)
∆θ − yv∆v

= yp∆δp + yc∆δc + ye∆δe (13)

−
(
µα + µα̇K

)
∆α− µv∆v +

(
K2 − µαK

)
∆θ = µe∆δe + µc∆δc (14)

Substituting Equations (8)-(11) into Equations (2)-(4) and then replacing ∆γ and ∆q
with Equations (7) and (5) yield Equations (12)-(14), where K is the differential op-
erator sign, and the definition of the control and longitudinal stability derivatives are
mentioned above. Without considering wind interference, the linear state-space equation
of the aircraft system in final approach can be expressed as

ẋ = Ax+Bu (15)

where x = [∆v ∆α ∆q ∆θ ∆h]T , u = [∆δe ∆δc ∆δp]
T ,

A =



xv xα + a∗4g 0 −a∗4g xh

−yv −yα + a∗3
g

v∗
1 −a∗3

g

v∗
−yh

µv − µα̇yv µα − µα̇yα + a1µ
α̇ g

v∗
µq + µα̇ −a∗3µ

α̇ g

v∗
0

0 0 1 0 0

a1 −a∗4v
∗ 0 a∗4v

∗ 0


,

B =


B1

B2

B3

O2×3

 , B1 =

 xe

xc

xp

T

, B2 =

 −ye

−yc

−yp

T

, B3 =

 µe − µα̇ye

µc − µα̇yc

−µα̇yp


T

.

2.2. Analysis of system uncertainty and actuator failure. Linearization modeling
is an approximate method, which brings some uncertainties to the model. In order to ap-
proximate the real system, we should consider the possible actuator failures, uncertainties
and perturbations of the system (15). In this subsection, we will delve into the analysis
of linear aircraft systems featuring coupled state vectors affected by external disturbances
and actuator faults.

Consider a linear continuous system with external disturbance of coupled state vector
and actuator fault

ẋ = Ax(t) +Buc(t) +Bωω(t) +BG(x) (16)

where ω(t) ∈ Rp is the bounded external disturbance, such as wind. G(x) is the external
uncertainty of the coupled state vector, introduced by the uncertainty of the system model.
The norm of G(x) is bounded by unknown but estimable constant h, i.e., ∥G(x)∥ ≤ h∥x∥.
And Bω = BF is also assumed the matching condition [10], where F is unknown, and the
norm of F is bounded by unknown constant df , i.e., ∥F∥ ≤ df .



396 H. QIN, Y. SUN, N. ZHANG AND Q.-Y. FAN

Considering the possibility of actuator failure, offset, and jamming, we define the actual
control input

uc(t) =

[
ρ 0
0 σ

] [
u(t)
ud(t)

]
(17)

ρ = diag(ρ1, ρ2, ρ3), σ = diag(σ1, σ2, σ3), σj =

{
0 or 1 ρj = 0
0 0 < ρj ≤ 1

(j = 1, 2, 3)

where ρ is the efficiency factor and σ determines whether the actuator is stuck.
Finally, the system (16) can be restructured as the following form

ẋ = Ax+Bρu+Bσud +BFω +BG (18)

In order to effectively design the control law of fault-tolerant control model, it is neces-
sary to assume that ω and ud are limited by positive real parameters (i.e., ∥ω∥ ≤ η1 and
∥ud∥ ≤ η2), and Rank(Bρ) = Rank(B) = l (l = 1, 2).

3. Adaptive Control Policy Based on Off-Policy Learning. According to the clas-
sical theory of optimal control [11],

ATPt + PtA+Q− PtBR−1BTPt = 0 (19)

where Pt is the unique positive definite solution to Riccati equation.
Denote

Kt = R−1BTPt (20)

Equation (19) can be expressed as

ATPt + PtA+Q−KT
t RKt = 0 (21)

Here, we give an important lemma.

Lemma 3.1. Let ρ and Kt be given in Equations (17) and (20). And then there exists
the following inequality relationship such that

xTKT
t RρRKtx ≥ ∥RKtx∥2 (22)

The proof is similar to [7].
In order to attain the desired performance in Equation (18), we design the adaptive

fault-tolerant control law as follows:

u(t) = K1(x) +K2(t) +K3(t) (23)

Substitute Equation (23) into Equation (18) to obtain the closed-loop system as follows:

ẋ = Ax(t) + Bρ(K1(x) +K2(t) +K3(t)) +Bσus(t) + BFω(t) + BG(x) (24)

An unknown positive constant k4 exists and satisfies the following inequation

∥σus(t) + Fω(t)∥ ≤ ∥σ∥uso + ∥F∥ωse ≤ uso + dfωse ≤ k4 (25)

Now the actuator structure control law is designed as follows:

K1(x) = −εKtx = −εR−1BTPtx (26)

K2(t) = − k̂4
2

∥RKtx∥k̂4 + γ(t)
RKtx (27)

K3(t) = −1

2
k̂5RKtx (28)

where ε is any positive constant, and γ(t) ∈ R+ is a uniformly bounded positive function
that satisfies

lim
t→∞

∫ t

t0

γ(τ)dτ ≤ γ ≤ ∞ (29)
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where γ is arbitrary positive constant. Besides, k̂4 and k̂5 are set as the estimates of k4
and k5. And they are also set to satisfy the following law:

dk̂4
dt

= −r4γ(t)k̂4 + 2r4∥RKtx∥ (30)

dk̂5
dt

= −r5γ(t)k̂5 + r5∥RKtx∥2 (31)

where r4 and r5 are any positive constants. Without loss of generality, let k5 =
2

λmin(R)
−2ε,

denote k̂4 = k4 + k̃4 and k̂5 = k5 + k̃5, then the error system can be obtained as follows:

dk̃4
dt

= −r4γ(t)k̃4 − r4γ(t)k4 + 2r4∥RKtx∥ (32)

dk̃5
dt

= −r5γ(t)k̃5 − r5γ(t)k5 + 2r5∥RKtx∥ (33)

Then consider the group of x, k̃4, k̃5. By
(
x, k̃4, k̃5

)
, the solutions in Equation (23) can

be obtained. Now the final result can be presented as Theorem 3.1.

Theorem 3.1. Take the adaptive state-feedback system (24) and the actuator structure
(23) that contains the error system change law (26)-(28) and (32)-(33) into consideration.
Then the relation (34) is satisfied

lim
t→∞

∥x(t)∥ = 0 (34)

Proof: Considering the adaptive control system (24), we define a scalar function as

V
(
x, k̃4, k̃5

)
= xTPtx+

1

2
r−1
4 k̃4

2
+

1

2
r−1
5 k̃5

2
(35)

According to Equations (24), (26)-(28) and (32)-(33), the derivative of V for t > 0 is

dV
(
x, k̃4, k̃5

)
dt

= 2xTPt((Ax+Bρ(K2 +K3)) +B(σus + Fω)) + 2xTPtBρK1(x)

+ r−1
4 k̃4

˙̃
k4 + r−1

5 k̃5
˙̃
k5 + xTPtBG(x) +GT (x)BTPtx

= xT
(
ATPt + PtA

)
x+ 2xTPtBρ(K2 +K3) + 2xTPtB(σus + Fω)

+ 2xTPtBρK1(x) + 2xTPtBG(x) + r−1
4 k̃4

˙̃
k4 + r−1

5 k̃5
˙̃
k5 (36)

Substitute ARE equation into Equation (36)

dV
(
x, k̃4, k̃5

)
dt

= −xTQx+ xTKT
t RKtx+ 2xTPtBρ(K2 +K3) + 2xTPtB(σus + Fω)

+ 2xTPtBρK1(x) + 2xTPtBG(x) + r−1
4 k4

˙̃
k4 + r−1

5 k5
˙̃
k5

≤ − xTQx+ 2xTKT
t RKtx+ 2xTPtBρ(K2 +K3) + 2xTPtB(σus + Fω)

+ 2xTPtBρK1(x) +GT (x)RG(x) + r−1
4 k̃4

˙̃
k4 + r−1

5 k̃5
˙̃
k5 (37)

Notice that

−xTQx+ 2xTKtRKtx+ 2xTPtBρK1(x)

= −xTQx+ 2xTKtRKtx− 2εxTKT
t RρKtx

≤ − xTQx+
2

λmin(R)
∥RKtx∥2 − 2ε∥RKtx∥2
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≤ −xTQx+

(
2

λmin(R)
− 2ε

)
∥RKtx∥2

≤ −xTQx+ k5∥RKtx∥2 (38)

Then Equation (37) becomes such that

dV
(
x, k̃4, k̃5

)
dt

≤ −xTQx+ k5∥RKtx∥2 + 2k4∥RKtx∥+ 2xTKT
t Rρ(K2 +K3)

+ r−1
4 k̃4

˙̃
k4 + r−1

5 k̃5
˙̃
k5 +GT (x)RG(x)

≤ − xTQx+ 2h2∥x∥2 + k5∥RKtx∥2 + 2k4∥RKtx∥ − k̂4
2 2∥RKtx∥2

∥RKtx∥k̂4 + γ
− k̂5∥RKtx∥2

+2k̃4∥RKtx∥+ k̃5∥RKtx∥2 − γ
(
k̃4

2
+ k̃4k4

)
− γ

(
k̃5

2
+ k̃5k5

)
(39)

And notice that

2k4∥RKtx∥ − k̂4
2 2∥RKtx∥2

∥RKtx∥k̂4 + γ
+ 2k̃4∥RKtx∥ = k̂4

2∥RKtx∥γ
∥RKtx∥k̂4 + γ

≤ 2γ (40)

k5∥RKtx∥2 − k̂5∥RKtx∥2 + k̃5∥RKtx∥2 = 0 (41)

Then

dV
(
x, k̃4, k̃5

)
dt

≤ −xTQx+ 2h2∥x∥2 + 2γ − γ
(
k̃4

2
+ k̃4k4

)
− γ

(
k̃5

2
+ k̃5k5

)
≤ −xT

(
Q− 2h2I

)
x+ ιγ (42)

where ι =
(
8 + k2

4 + k2
5

)
/4. Since Q− 2h2I > 0 and ∥Q∥ > 2h2, Equation (42) becomes

dV
(
x, k̃4, k̃5

)
dt

≤ −λmin

(
Q− 2h2I

)
∥x∥2 + ιγ (43)

Integrate Inequality (43) over [t0, t], we obtain that

0 ≤
∫ t

t0

λmin

(
Q− 2h2I

)
∥x(τ)∥2dτ

≤ V
(
x(t0), k̃4(t0), k̃5(t0)

)
− V

(
x(t), k̃4(t), k̃5(t)

)
+ ι

∫ t

t0

γ(τ)dτ

≤ V
(
x(t0), k̃4(t0), k̃5(t0)

)
+ ι

∫ t

t0

γ(τ)dτ (44)

The rest of proof is similar to [7].
The state-feedback gain matrix Kt can be computed using data streams, following the

off-policy data-driven approach presented in [10] for linear periodic continuous systems.
This approach does not depend on the initial stabilizing controller and enables online
learning based on the collected system input and state. Therefore, the control law gain
matrix for the linear steady continuous system considered in this paper can be obtained.

4. Simulation Results. Consider a carrier-based aircraft landing system without exter-
nal disturbance

ẋ = Ax(t) +Bρu(t) + Bσus(t) +BG(x) (45)

where the values of A and B are shown in [8], ρ = diag(0.5, 0, 1), σ = diag(0, 0, 0), and
G(x) = (sinx2 − cosx4, 0, 0)

T .
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Define Q = diag(10, 10, 10, 10, 10), R =

{
I, t < 15
0.01 ∗ I, t ≥ 15

and ε = 1. Based on the

proposed data-driven off-policy method in [10], the matrix Kt can be obtained

Kt =

 −0.4274 231.2449 −158.8484 −465.2154 −2.7451

0.1779 −107.0320 50.3676 188.6997 1.3534

3.0470 −63.9467 7.7677 78.4589 0.7735

 (46)

And then the proposed controller (23) can be computed.
Define the fault model as follows. The system is normal before 15 seconds, but it has

coupled state vectors at the beginning. After 15 seconds, the 1st actuator shows the loss
of efficiency (e.g., 50% reduction in thrust, and 50% decrease in torque), the 2nd actuator
is outage, and the 3rd actuator is stuck with time-varying uncertainty.

In order to demonstrate the obvious fault-tolerant and anti-jamming capabilities with-
out loss of generality, the simulation employs the following initial parameters

x(0) = [0.7,−1, 0.8, 1.2, 1.3]T , k̂4(0) = 1.45, k̂5(0) = 0.90,

γ(t) = 0.02, r4 = r5 = 20 (47)

The controller parameters k̂4, k̂5 are shown in Figure 1 and the state trajectories of
system (45) can be observed in Figure 2.

Figure 1. Changes of the controller parameters k̂4 and k̂5

Figure 2. State responses under the actuator failures and disturbances
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Figure 1 and Figure 2 illustrate that k̂4 and k̂5 remain uniformly bounded, and the
adaptive control strategy can suppress the unknown disturbance before 15 seconds. After
the actuator failure occurs at 15 seconds, the fault-tolerant controller can be activated
and the states converge to zero quickly despite under the actuator faults and uncertain
disturbances. The effectiveness of the proposed policy is demonstrated in the example.

5. Conclusions. This paper proposes an adaptive fault-tolerant control scheme for air-
craft systems with coupled state variables, time-varying disturbances, and actuator faults
based on off-policy learning. The scheme is designed to be robust and fault-tolerant for
general actuator fault models. We derive the system’s state equation and prove that the
uncertain system is uniformly bounded with states that converge asymptotically to zero.
The proposed strategy can effectively control a carrier-based aircraft in final approach
under actuator failures and disturbances. It is expected to be extended and applied to
nonlinear systems in order to achieve a broader range of applications.
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