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Abstract. This work focuses on the development of detection methods and character
recognition of Thai texts in scene and graphic images. The proposed technique consists
of two main tasks: text detection and text recognition. In the text detection phase, a
Maximally Stable Extremal Regions (MSER) algorithm and a Fast Region-based Convo-
lutional Neural Network method (Faster R-CNN) with various backbones were evaluated.
The MSER algorithm achieved a mean Average Precision (mAP) of 0.80 at a parameter
value of ∆ = 0.5, while Faster R-CNN with VGG-16 as the backbone achieved the highest
mAP of 0.85 at a confidence score threshold of 0.5. For the text recognition, a compar-
ison between network configurations with and without additional dense layers revealed
that the configuration with additional dense layers achieved better performance, with a
lower Character Error Rate (CER) of 25.2% and higher precision, recall, and F1-score.
Keywords: Text detection, Text recognition, Maximally Stable Extremal Regions (MS-
ER), Faster R-CNN, Hybrid networks

1. Introduction. Detecting and recognizing of text in images have gained substantial at-
tention and interest in the research community. Their potential applications span various
domains, notably including augmented and virtual reality [1]. However, this task pos-
es a considerable challenge, as images can contain diverse and substantial object types,
including text fragments and non-text artifacts [2]. In order to tackle these challenges
in text detection, researchers have introduced various computer vision and machine vi-
sion methods in the past years. Threshold-based techniques have been widely used and
considered pioneers in detecting objects, including text regions, within images [3, 4]. In
general, text within images often consists of characters represented by a relatively uniform
pixel intensity. Therefore, the identification of text regions can be achieved by applying
either a static or dynamic thresholding technique. However, the threshold technique is
sensitive to the image variation and cannot cope with the uncertainty of the image il-
lumination [5]. Connected component analysis methods have been proposed and utilized
[5, 6, 7]. Among these techniques, Stroke Width Transforms (SWT) have been introduced
and proven effective [6, 8, 9]. SWT is capable of detecting diverse text appearances and
different text properties, such as fonts, language types, colors, and illumination changes
in images. However, it can produce poor segmentation results if inaccurate stroke maps
are derived during the process [9]. To overcome this limitation, edge-based techniques, for
instance, the Hough transform, have been utilized [10].

Recently, deep learning techniques have made significant advancements in various com-
puter vision tasks, including text segmentation [11, 12, 13, 14, 15]. Convolutional Neural
Networks (CNNs) have been particularly effective in learning and segmenting text regions
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in images. Zhao et al. proposed a technique that divides an image into small window and
performed a binary classification (text and non-text) using a CNN. Without local con-
texts, a post-processing is required to aggregate the classification results for segmenting
homogeneous text regions. A two-step process using deep learning was then proposed [15].
In the first step, a CNN is used for low-level feature extraction. In the second step, the
extracted features are merged, and post-processing techniques, such as Locality-Aware
Non-Maximum Suppression (LANMS), are applied to refining the text region segmen-
tation. Another approach is the use of a single-shot detector with region attention, as
proposed by He et al. [13]. This method incorporates attention mechanisms to highlight
text regions during the detection process. Additionally, inception-based models have been
utilized to detect multi-scale text in natural scene images [16], and inception models
with multi-orientation capabilities have been employed for text detection [14]. Overall,
these deep learning techniques, particularly CNN-based models and their variants, have
demonstrated remarkable progress in accurately detecting and segmenting text regions in
images.
In addition to text detection, text recognition also plays a crucial role in the overall pro-

cess. Conventionally, in text recognition methods, the characters in text images are first
segmented and then recognized using machine learning techniques. Descriptive features
such as local primitive structure, shape, and morphology are commonly used to represent
each character [17, 18, 19]. Subsequently, a classification process is applied to perform-
ing the recognition task. However, an alternative approach involves utilizing Recurrent
Neural Networks (RNNs) for recognizing text sequences instead of individual characters
[20]. Unlike conventional approaches that rely on accurate character segmentation, RNNs
consider the contextual information present in the sequence of image components. This
enables them to capture the overall structure and semantics of the text, enhancing the
recognition performance. To address this, a hybrid method is proposed in this work, which
combines feature extraction and learning the dependencies of the components within the
image to predict the corresponding texts. The hybrid method consists of two deep learn-
ing structures: (i) a CNN network implemented to extract feature maps from the input
images, and (ii) an RNN network incorporated to learn the dependencies of the extracted
feature maps. By leveraging the strengths of both CNN and RNN architectures, this
hybrid method aims to improve the accuracy of text recognition in images. The feature
extraction capability of the CNN enhances the representation of the input images, while
the RNN captures the sequential dependencies of the text components.
This paper is organized as follows. Section 2 provides an overview of our approach for

detecting and recognizing scene and graphic text in images. We applied both conventional
MSER (Maximally Stable Extremal Regions) and deep learning-based methods for text
detection task. For text recognition, we employ a hybrid method that predicts character
sequences in the images. Additionally, in this section, we provide detailed information
about the images and data domain used in our study. In Section 3, we present the experi-
mental setup and methodology used to evaluate the performance of our text detection and
recognition tasks. Subsequently, in Section 4, we present the results and analysis of our
experiments. We discuss the performance of the text detection and recognition methods,
comparing the outcomes of the conventional MSER and deep learning-based approaches.

2. Research Method. This work presents a comprehensive method for detecting and
recognizing text in images, which consists of two main stages: text detection and text
recognition. In this work, the text detection process employs two distinct approaches to
facilitate a comparative analysis. Firstly, the MSER algorithm is employed to identify
potential text regions in the image. Then, a post-processing step is performed to merge
similar regions and eliminate false positives. For a deep learning-based technique, Faster
R-CNN is implemented to classify and refine these text regions. After the detection, we
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describe text recognition process. A hybrid deep learning network is utilized. This network
combines a convolutional neural network (CNN) and a recurrent neural network (RNN).
The CNN extracts high-level features from the image, capturing spatial information and
identifying distinctive patterns related to text. These features are then fed into the RNN,
which processes the sequence of features to predict the character sequences present in the
text. An overview of the entire process is depicted in Figure 1.

Figure 1. Overview of the process for detecting and recognizing text in
both scene and graphic images

Therefore, this section will begin by providing an explanation of the images and data
domain used in our study, followed by a description of the text detection and recognition
processes in a subsequent section.

2.1. Image data. In this work, the image dataset used was collected manually. The
images are billboard images found in various scenes across the Ubon Ratchathani province,
Thailand. The images are divided into two groups, i.e., (i) scene images and (ii) graphic
images. The image dataset used in the study consists of Thai language text regions, with
each image containing at least one explicit text region. For the sake of simplicity, the
dataset was limited to 1,700 images, each of which was chosen to contain at least a single
text region, resulting in a total of 1,912 text regions across the dataset. To prepare a set of
ground-truth data for the study, each image was manually segmented using the annotation
tool ImageJ [21] and Roboflow [22], with the position of the text region specified as a
bounding box. In addition, for the recognition task, each text region in the images was
associated with a text label, which was also performed manually.

2.2. Text region detection. This section explains the text region detection process
carried out in this work. We apply two techniques to performing the detection task (i.e.,
MSER and Faster R-CNN).

2.2.1. MSER. We derive from the original method and carry out the detection process,
followed by a pre-processing task. In general, the intensity variation of extremal region
(Ri) in an Image I can be defined as follows:
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I(Ri) =
|Ri+∆ −Ri−∆|

|Ri|
(1)

where, |R| is the area of the extremal region R, R+∆ denotes the extremal region which
is ∆ levels containing R, and |R+∆ − R| is the area difference of the two regions. The
stability of an extremal region R may depend on the inverse of the relative area variation
of R; if the intensity level is increased by the value ∆. After detecting MSER regions, we
proceed to merge the sets of detected fragments to form text regions. This is achieved by
applying the MeanShift algorithm, as described below.

Merge Algorithm:
1. Divide the image into 6 non-overlapping horizontal regions.
2. For each character bounding box in character bounding boxes :

(a) Compute the centroid of the bounding box.
(b) Determine the region in which the centroid falls.
(c) Generate a hot vector representing the spatial location: for example, [1, 0, 0, 0,

0, 0] represents a bounding box located in the first region.
3. Use the aspect ratio and the vector representing the spatial location of the bounding

box as the features.
4. Apply the MeanShift algorithm using the generated hot vectors and aspect ratios

as features to clustering the character bounding boxes.
5. Merge the character bounding boxes within each cluster to form the text regions,

as described in the previous algorithms.
6. Return the list of merged text regions: text regions.

To minimize false negatives (non-text regions), we employ a classification-based tech-
nique using the Bayes classifier. The Histogram of Oriented Gradients is utilized as the
feature descriptor for each text region. During the non-text region rejection process, a
rule-based technique is applied. Let P (text) and P (¬text) represent the prior probabili-
ties of a region being text and non-text, respectively. According to Bayes’ theorem, the
posterior probability of a region being sensitive to non-text can be expressed as

P (¬text|O) =
P (O|¬text)P (¬text)

P (O)
(2)

where

P (O) = P (O|text)P (text) + P (O|¬text)P (¬text) (3)

A non-text region is rejected if P (¬text|O) ≥ ϵ, where ϵ is a predefined threshold. An
example of the detection results is demonstrated in Figure 2, including the sequential
outcomes of the explained detection method, encompassing MSER, the identification of
candidate text regions, and ultimately, the final text region detection.

2.2.2. Faster R-CNN. The technique first derives Region Proposals using a Region Pro-
posal Network (RPN). The RPN generates potential text region proposals in the image
by proposing candidate bounding boxes that might contain text. It takes the input image
I and produces a set of region proposals, with each proposal represented by a bound-
ing box. Then, a Region of Interest (RoI) pooling layer is applied. Consequently, the
resulting pooled features are concatenated into a fixed-length feature vector. This feature
vector is then fed into the fully connected layers for object classification and bounding
box regression.
In the classification process, the model predicts the probability of each RoI being text

or non-text. A softmax activation is applied to the output of the classification layer. Let
us denote the output probabilities as Pc, where Pc represents the probability distribution
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Figure 2. Example of the detection results: Column 1 displays the input
images, Column 2 presents the MSER in the images, Column 3 shows the
detected candidate texts, and Column 4 presents the identified text regions

over classes (text or background) for each RoI. The classification loss Lcls is computed
using the following equation:

Lcls = −
∑
i

yi log(Pci), (4)

where yi represents the ground truth class label (1 for text, 0 for non-text) for RoI i, and
Pci represents the predicted probability of the correct class.

On the other hand, the regression procedure predicts the refined coordinates of the
bounding box for each RoI. It outputs bounding box positions, representing the offsets
in terms of (x, y, w, h) from the original proposal. These offsets are used to refine the
initial bounding box. Thus, given the predicted offsets as Preg, the regression loss Lreg is
computed as follows:

Lreg =
∑
i

SL1

(
Pregi − P̂regi

)
, (5)

where P̂regi represents the ground truth bounding box offset for RoIi, and SL1 is the
smooth L1 loss function.

2.3. Text recognition. After detecting the text regions in the images using the previous
process, the next step is to perform a recognition task. This task is accomplished using
a hybrid method that combines a CNN network for extracting feature maps from the
images and an RNN network for capturing dependencies within those feature maps. During
the training process, the model is trained on the predicted character sequence using the
Connectionist Temporal Classification (CTC) loss scheme. A diagram illustrating this
process is shown in Figure 3.

Figure 3. The hybrid network for the text recognition process used in this
work
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Let T be the text region that has been detected from the previous process. The Feature
maps (F ) for a specific region can be obtained using a convolution layer, which produces
a fixed-length vector. We denote the feature map as a function of P , where

P (T, F ) = [p1, p2, . . . , pk], (6)

where p1, p2, . . . , pk are k fixed-length of feature map vectors in T . Then, the feature
sequences (P ′) are generated as

P ′ = p′1 ⊕ p′2 ⊕ · · · ⊕ p′n (7)

where n represents the length of the sequence. Each p′i is a fixed-length vector obtained
after a reconstructing process of the feature map vectors. Then, the feature sequence P ′

is fed into a Bidirectional Gated Recurrent Unit (BiGRU) layer. At each time step t in
the forward direction, the forward GRU updates its hidden state using the input feature
vector p′t, the bias for the update gate (bz), the bias for the reset gate (br), the bias for the
hidden state transformation (bh), and the previous forward hidden state hforward

t , which is
as follows:

zforwardt = σ
(
W forward

z ·
[
p′t, h

forward
t−1

]
+ bforwardz

)
rforwardt = σ

(
W forward

r ·
[
p′t, h

forward
t−1

]
+ bforwardr

)
h̃forward
t = tanh

(
W forward

h ·
[
p′t, r

forward
t ⊙ hforward

t−1

]
+ bforwardh

)
hforward
t =

(
1− zforwardt

)
⊙ hforward

t−1 + zforwardt ⊙ h̃forward
t

Similarly, at each time step t in the backward direction, the backward GRU updates its
hidden state using the input feature vector p′t and the previous backward hidden state
hbackward
t :

zbackwardt = σ
(
W backward

z ·
[
p′t, h

backward
t+1

]
+ bbackwardz

)
rbackwardt = σ

(
W backward

r ·
[
p′t, h

backward
t+1

]
+ bbackwardr

)
h̃backward
t = tanh

(
W backward

h ·
[
p′t, r

backward
t ⊙ hbackward

t+1

]
+ bbackwardh

)
hbackward
t =

(
1− zbackwardt

)
⊙ hbackward

t+1 + zbackwardt ⊙ h̃backward
t

The final output of the BiGRU can be obtained by combining the hidden states from both
the forward and backward GRUs at each time step, as follows:

hBiGRU
t =

[
hforward
t , hbackward

t

]
(8)

hBiGRU
t denotes the final hidden state of the BiGRU at time step t, which incorporates

information from both the forward and backward directions.
To process the output of the BiGRU layers, in this work, we feed it to a dense layer.

The dense layer is implemented to transform the input into a format suitable for the
target task. It can be represented as

Z = H ·Wd + bd (9)

H represents the output tensor from the BiGRU layers, Wd is the weight matrix of the
dense layer, and bd is the bias vector of the dense layer. Then, at each time step, we apply
the softmax activation function to the tensor Z to obtain a probability distribution over
possible output labels (L), which obtains the output (yt) after the softmax activation.
In the pre-prediction layer, the Connectionist Temporal Classification (CTC) algorithm

is utilized to map input sequences to their corresponding output labels. CTC incorporates
both the forward and backward algorithms to effectively manipulate sequence labeling
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tasks. The forward algorithm determines the probability of transitioning to each label at
each time step. Given the forward variables as αt(l) representing the probability of being
in label l at time step t, the forward variables are calculated as follows:

α1(l) = y1(l) (10)

αt(l) =

(∑
k∈L

αt−1(k) + αt−1(blank)

)
· yt(l) for t > 1 (11)

The backward algorithm calculates the probability of advancing from each label at
each time step to the end of the sequence. We denote βt(l) as the backward variables,
representing the probability of transitioning from label l at time step t to the end. The
backward variables are calculated as follows:

βT (l) = 1 for l = blank (12)

βT (l) = 0 for l ̸= blank (13)

βt(l) =

(∑
k∈L

βt+1(k) + βt+1(blank)

)
· yt+1(l) for t < T (14)

where T is the total time steps in the sequence.
Using the forward and backward variables, we can calculate the CTC loss. The CTC

loss measures the difference between the predicted sequence and the target sequence,
which can be computed as follows:

LCTC = − log

(∑
l∈L

(αT (l) · βT (l) + αT (blank) · βT (blank))

)
(15)

We can feed the concatenated hidden states through the softmax activation and use the
forward-backward algorithm to calculate the CTC loss. The forward-backward algorithm
efficiently considers all possible label alignments and accounts for repeated and blank
labels, enabling the model to learn the alignment between the input and target sequences
effectively.

3. Experiment and Result. The previous section explains the methodology for de-
tecting and recognizing in the images used in this work. To assess the effectiveness of the
technique, two distinct experiments were conducted to evaluate the performance of the
detection algorithm and the recognition approach, respectively.

3.1. Text detection. In the detection, we initially implemented the MSER. We ex-
amined the best performance from the detection by varying the ∆ parameter. In the
evaluation, we utilized mean Average Precision (mAP) as a metric to assess the detection
performance, as shown in Table 1.

Table 1. Results obtained by MSER for the detection process. The pa-
rameter ∆ is varied to observe the results of the detection.

∆
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MSER 0.72 0.75 0.79 0.80 0.79 0.79 0.67 0.67

Table 1 demonstrates the performance of MSER at different ∆ values ranging from
0.2 to 0.9. The highest mAP value of 0.80 was achieved at ∆ = 0.5, indicating the best
detection performance.

In addition to MSER, we conduct another experiment to compare the detection per-
formance using Faster R-CNN. We implemented two back-bone for the detection task,
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i.e., (i) Resnet101 and (ii) inception-resnet V2. In the training process, we used default
parameters of both network. The train images were augmented to increase the size of the
training set. We implemented 3 augmentation functions, i.e., (i) rotation, (ii) scale and
(iii) sheer. The training was carried in 100 epochs. The testing images (same as the previ-
ous experiment) were fed to the network and determine the results of different confident
scores. The results are shown in Table 2.

Table 2. mAP results for text detection using Faster R-CNN with different
backbones and confident threshold scores

Backbones
Confidence score
0.5 0.6 0.7

VGG-16 0.85 0.80 0.75
ResNet-50 0.81 0.75 0.73
MobileNet 0.78 0.76 0.73

Table 2 presents the experimental results for text detection using Faster R-CNN with 3
backbone architectures and confidence score thresholds. The results indicated that the
choice of backbone architecture had a noticeable impact on the overall performance.
Among the tested backbones, VGG-16 achieved the highest mAP values across all con-
fidence score thresholds, with a maximum of 0.85 at a threshold of 0.5. ResNet-50 and
MobileNet followed with mAP values of 0.81 and 0.78, respectively, at the same thresh-
old. As the confidence score threshold increased from 0.5 to 0.7, the mAP values generally
decreased, indicating that stricter thresholds resulted in fewer detected text objects.

3.2. Text recoginition. After completing the detection process, we proceeded with the
recognition procedure. In this experiment, we employed the text recognition technique
explained in Section 2.3. To begin, we process the training with 100 training epochs,
followed by testing on the evaluation dataset. To evaluate the accuracy of the Optical
Character Recognition (OCR) output, we utilized the Character Error Rate (CER) metric.
CER is based on the concept of Levenshtein distance, which measures the minimum
number of character-level operations required to transform the ground truth text (also
known as the reference text) into the OCR output.

CER =
S +D + I

N
(16)

where S is number of substitutions,D is number of deletions, I is number of insertions, and
N is number of characters in reference text (ground truth). We conducted a comparison
between two network configurations: (i) a configuration with additional dense layers and
(ii) a configuration without additional dense layers. The results of this comparison are
summarized in Table 3 and visualized in Figure 4.
The configuration with additional dense layers outperformed the configuration with-

out dense layers in terms of CER, precision, recall, and F1-score. The CER was lower
(25.2%) for the configuration with dense layers compared to the configuration without

Table 3. Comparison of results for different network configurations

Metric Configuration 1 Configuration 2
10 additional dense layer No dense layers

CER (%) 25.2 27.8
Precision (%) 86 82
Recall (%) 85 82
F1-score (%) 86 85
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Figure 4. Examples of text detection and recognition in natural scene images

dense layers (27.8%). Additionally, the configuration with dense layers achieved higher
precision (86%), recall (85%), and F1-score (86%) compared to the configuration without
dense layers (precision: 82%, recall: 82%, F1-score: 85%). This demonstrates that the
inclusion of additional dense layers improved the accuracy and overall performance of the
text recognition system. See Figure 4 for an example of the results.

3.3. Insight discussion. The experimental results (Tables 1 and 2) demonstrate the per-
formance of the text detection and recognition techniques used in this work. The MSER
algorithm achieves a promising mean Average Precision (mAP) of 0.80 with ∆ = 0.5,
although detection performance varied with different parameter settings, suggesting the
need for careful tuning. Among the Faster R-CNN approaches, VGG-16 shows superior
performance in text detection, with higher mAP values across different confidence score
thresholds. However, stricter thresholds result in fewer detected text objects.

For text recognition, the configuration with additional dense layers outperforms the oth-
ers, achieving a lower Character Error Rate (CER) of 25.2% and higher precision, recall,
and F1-score. This indicates the improvement in accuracy and overall performance with
the inclusion of dense layers. There are limitations and potential areas for improvement.
The evaluation was conducted on specific datasets, and the generalizability of the results
should be further investigated. Optimizing parameter values and exploring advanced tech-
niques for text detection and recognition are necessary. Handling complex images with
distorted or overlapping text remains a challenge. Future research should address these
limitations to enhance the robustness and accuracy of text detection and recognition in
diverse real-world scenarios.

4. Conclusion. The work emphasizes the development of detection methods and Thai
character recognition in billboards. The proposed technique comprises two main processes:
text detection in images and recognition of the detected texts. Through experimental
evaluations, the effectiveness of different algorithms and configurations was assessed.

In the text detection phase, the MSER algorithm demonstrated promising performance,
achieving a mean Average Precision (mAP) of 0.80 at a parameter value of ∆ = 0.5.
However, it is important to note that parameter tuning played a crucial role in obtaining
optimal detection results. Additionally, the Faster R-CNN approach, with VGG-16 as the
backbone, showed superior performance in text detection compared to other backbones,
achieving an mAP value of 0.85 at a confidence score threshold of 0.5.

For text recognition, the comparison between network configurations with and without
additional dense layers revealed that the configuration with additional dense layers yielded
better results. It achieved a lower Character Error Rate (CER) of 25.2% and higher
precision, recall, and F1-score, indicating improved accuracy and overall performance of
the text recognition system.
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Future work should investigate the generalizability of the proposed technique to diverse
datasets. Optimization of parameters and exploration of advanced techniques can enhance
text detection and recognition performance. Addressing the challenge of handling complex
images with distorted or overlapping text requires further research and development.
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