
ICIC Express Letters ICIC International c⃝2024 ISSN 1881-803X
Volume 18, Number 5, May 2024 pp. 469–475

PERTURBATION OF ADAPTIVE DIFFERENTIAL EVOLUTION
WITH OPTIONAL EXTERNAL ARCHIVE FOR CONTINUOUS

OPTIMIZATION PROBLEM

Ryu Aishima and Michiharu Maeda∗

Department of Computer Science and Engineering
Fukuoka Institute of Technology

3-30-1 Wajirohigashi, Higashi-ku, Fukuoka, Fukuoka 811-0295, Japan
∗Corresponding author: maeda@fit.ac.jp

Received May 2023; accepted December 2023

Abstract. This paper describes perturbation of adaptive differential evolution with op-
tional external archive for continuous optimization problem. Perturbation is a phenom-
enon in which the motion by the contribution of a main force is disturbed by the con-
tribution of other secondary forces. Adaptive differential evolution with optional external
archive includes an approach that automatically adjusts the crossover rate and the scale
factor and speeds up the convergence of the solution with a novel mutation strategy. In
order to show the validity of our algorithm, experimental results are compared to existing
algorithms.
Keywords: Perturbation, Differential evolution, Optional external archive, Optimiza-
tion problem

1. Introduction. Metaheuristics have approximation frameworks against the backgrou-
nd of increasing scale and complexity for real systems and combine experimental ap-
proaches for solving optimization problem [1]. Metaheuristics are preferred for fast and
high-quality solutions [2]. Metaheuristics include such as real-coded genetic algorithm
(RGA), particle swarm optimization (PSO), and differential evolution (DE). RGA adopts
the real number vector as encoding and implements crossover for this coding [3]. PSO
explores an optimal solution influenced by two factors. The one is the best position each
particle has ever found, and the other is the best position found for all particles [4]. DE
is an algorithm to explore the optimal solution that implements to repeat three opera-
tions: mutation, crossover, and selection [5]. DE is an effective algorithm for a number
of optimization problems because of simple and efficient procedures. DE has been ap-
plied in various fields. A new real-coded modified differential evolution based automatic
fuzzy clustering algorithm which automatically evolves the number of clusters as well as
the proper partitioning from a data set has been proposed [6]. An adaptive differential
evolution with multiple trial vectors for training artificial neural networks (ANNs) has
been suggested [7]. For optimizing the global properties of segmentation by means of a
global optimizer, differential evolution superpixel segmentation has been studied [8]. As
the performance depends on parameters such as scale factor and crossover rate, there
is an effective DE variant such as adaptive differential evolution with optional exter-
nal archive (JADE). JADE automatically adapts parameters and implements mutation
strategy called DE/current-to-pbest with optional archive and shows relatively superior
performances for high dimensional problems [9]. By incorporating a perturbation in which
a main force is disturbed by a subsidiary power, differential evolution with perturbation
(DEP) has yielded significant results [10]. DEP tends to be able to explore a solution
efficiently and to avoid to local optima by introducing perturbation.

DOI: 10.24507/icicel.18.05.469

469

470 R. AISHIMA AND M. MAEDA

In this paper, we present perturbation of adaptive differential evolution with option-
al external archive (PJADE). Perturbation has a physical phenomenon that the motion
by the contribution of the main force is disturbed by the influence subsidiary power.
Adaptive differential evolution with optional external archive includes an approach that
automatically adjusts the crossover rate and the scale factor and speeds up the conver-
gence of the solution with a novel mutation strategy. By introducing perturbation to
adaptive differential evolution with optional external archive, our algorithm tends to be
able to explore a solution efficiently and to avoid to local optima. In order to show the
effectiveness of the proposed algorithm, experiment results are compared to existing algo-
rithms by CEC2017 benchmark functions. PJADE shows equal to or better results than
the existing algorithms.
This paper is organized as follows. Section 2 describes existing algorithms for DE and

JADE. Section 3 presents PJADE. Section 4 describes numerical experiments and results.
Finally, Section 5 summarizes conclusions.

2. Existing Algorithm.

2.1. Differential evolution. DE is an algorithm that is simple and easy to implement.
DE updates a new solution by repeating mutation, crossover, and selection. Mutation
operates to generate mutant vector to use three solutions randomly from a set of candidate
solution. Mutation is defined as follows:

vi,j = xr1,j + F · (xr2,j − xr3,j) (1)

where v is the mutant vector, i is number of solutions, and j is number of dimensions.
xr1, xr2, and xr3 are selected solutions randomly from current population, r1, r2, and
r3 are each another solution. F is the scale factor. Crossover operates to generate trial
vector with the use of mutant vector and target vector. Crossover is defined as follows:

ui,j =

{
vi,j if (randj ≤ Cr or j = jrand)
xi,j otherwise

(2)

where u is the trial vector, and x is the target vector. randj is random number to generate
from uniform distribution in [0, 1], Cr is the crossover rate, and jrand is the index to select
randomly in 1, 2, . . . , D. D is the number of dimensions. Selection compares xi with ui,
and the one with the better objective function value as the next generation solution.
Selection is defined as follows:

xi =

{
ui if (f(ui) < f(xi))
xi otherwise

(3)

The pseudo code of DE is shown in Algorithm 1.

Algorithm 1. Differential evolution

Generate randomly initial solutions xi (i = 1, 2, . . . , N).
Calculate the fitness of initial solutions.
FEs = N .
while FEs < MaxFEs do

for i = 1 to N do
Randomly select three solutions xr1, xr2 and xr3 from current population.
Generate the mutant vector vi according to (1).
Generate the trial vector ui according to (2).
Calculate the fitness of the trial vector ui and FEs = FEs + 1.
if f(ui) < f(xi) then

xi = ui

end if
end for

end while

ICIC EXPRESS LETTERS, VOL.18, NO.5, 2024 471

2.2. Adaptive differential evolution with optional external archive. JADE is the
algorithm to be effective DE variant. JADE automatically adjusts the parameters F and
Cr with optional archive. Mutation operates to generate mutant vector to use the strategy
called DE/current-to-pbest. Mutation is defined as follows:

vi,j = xi,j + Fi ·
(
xp
best,j − xi,j

)
+ Fi · (xr1,j − x̃r2,j) (4)

where xp
best is the solution to be selected randomly from the top N × p (p ∈ [0, 1]) in

the current population. xr1 is the solution to be selected randomly from P, and P is the
current population. x̃r2 is the solution to be selected randomly from P∪A, and A is a set
of archived inferior solutions. Fi is the scale factor of each solution. Crossover operates to
generate trial vector with the use of mutant vector and target vector. Crossover is defined
as follows:

ui,j =

{
vi,j if (randj ≤ CRi or j = jrand)
xi,j otherwise

(5)

where CRi is the crossover rate of each solution. CRi of each individual xi is independently
generated according to a normal distribution of mean µCR and standard deviation 0.1.
The mean µCR is initialized to be 0.5 and then updated at the end of each generation as
follows:

CRi = randni(µCR, 0.1) (6)

µCR = (1− c) · µCR + c ·meanA(SCR) (7)

where c is a positive constant between 0 and 1. SCR is a set of all successful crossover
rates CRi’s at generation t. meanA(·) is the usual arithmetic mean. On the other hand,
Fi of each individual xi is independently generated according to a Cauchy distribution of
location parameter µF and scale parameter 0.1. The location parameter µF is initialized
to be 0.5 and then at the end of each generation as follows:

Fi = randci(µF, 0.1) (8)

µF = (1− c) · µF + c ·meanL(SF) (9)

where SF is a set of all successful mutation factor Fi’s at generation t, and meanL(·) is
calculated as follows:

meanL(SF) =

∑
F∈SF

F 2∑
F∈SF

F
(10)

The pseudo code of JADE is shown in Algorithm 2.

3. Perturbation of Adaptive Differential Evolution with Optional External
Archive. In this section, we describe perturbation of adaptive differential evolution with
optional external archive (PJADE). The solution with perturbation tends to be bet-
ter than the current solution. The proposed algorithm introduces perturbation in the
crossover operation. The solution with perturbation is defined as follows:

u′
i,j =

{
vi,j + sIrj if (randj ≤ CRi or j = jrand)
xi,j + sIrj otherwise

(11)

where u′ is the solution with perturbation. r is a vector to be generated from uniform
distribution in [−1, 1]. s and I are calculated in the following formula.

s = a− 4aFEs/MaxFEs (12)

I = (xmax − xmin)/R (13)

where a and R are constant parameters. FEs and MaxFEs are the current and maximum
number of function evaluation, respectively. xmax and xmin are maximum and minimum
in the search range, respectively.

The pseudo code of PJADE is shown in Algorithm 3.

472 R. AISHIMA AND M. MAEDA

Algorithm 2. Adaptive differential evolution with optional external archive

Set µCR = 0.5, µF = 0.5 and A = ∅.
Generate randomly initial solutions xi (i = 1, 2, . . . , N).
Calculate the fitness of initial solutions.
FEs = N .
while FEs < MaxFEs do

SF = ∅, SCR = ∅.
for i = 1 to N do

Generate CRi and Fi according to (6) and (8), respectively.
Randomly select xp

best from the top N × p (p ∈ [0, 1]) in the current population.
Randomly select xr1 from current population P.
Randomly select x̃r2 from P ∪A.
Generate the mutant vector vi according to (4).
Generate the trial vector ui according to (5).
Calculate the fitness of the trial vector ui and FEs = FEs + 1.
if f(ui) < f(xi) then

xi = ui; xi → A; CRi → SCR, Fi → SF .
end if
Randomly remove solutions from A so that |A| ≤ N .
Update µCR and µF according to (7) and (9), respectively.

end for
end while

Algorithm 3. Perturbation of adaptive differential evolution with optional external
archive

Set µCR = 0.5, µF = 0.5 and A = ∅.
Generate randomly initial solutions xi (i = 1, 2, . . . , N).
Calculate the fitness of initial solutions.
FEs = N .
while FEs < MaxFEs do

SF = ∅, SCR = ∅.
for i = 1 to N do

Generate CRi and Fi according to (6) and (8), respectively.
Randomly select xp

best from the top N × p (p ∈ [0, 1]) in the current population.
Randomly select xr1 from current population P.
Randomly select x̃r2 from P ∪A.
Generate the mutant vector vi according to (4).
if FEs < MaxFEs/4 then

Generate the trial vector ui according to (5).
Calculate the fitness of the trial vector ui and FEs = FEs + 1.
Generate the trial vector with perturbation u′

i according to (11).
Calculate the fitness of the trial vector with perturbation u′

i and FEs = FEs + 1.
if f(u′

i) < f(ui) then
ui = u′

i

else
ui = ui

end if
else

Generate the trial vector ui according to (5).
Calculate the fitness of the trial vector ui and FEs = FEs + 1.

end if
if f(ui) < f(xi) then

xi = ui; xi → A; CRi → SCR, Fi → SF .
end if
Randomly remove solutions from A so that |A| ≤ N .
Update µCR and µF according to (7) and (9), respectively.

end for
end while

ICIC EXPRESS LETTERS, VOL.18, NO.5, 2024 473

4. Numerical Example. We compare our algorithm (PJADE) to real-coded genetic
algorithm (RGA), particle swarm optimization (PSO), differential evolution (DE), adap-
tive differential evolution with optional external archive (JADE), and differential evolution
with perturbation (DEP) by the CEC2017 benchmark functions. CEC2017 benchmark
functions are constructed by 29 functions [11]. All test functions are minimization prob-
lems and define the same search ranges in [−100, 100]D. F1 to F9 are the functions to be
shifted and rotated. Especially, F1 and F2 are the unimodal functions, and F3 to F9 are
the multimodal functions. F10 to F19 are hybrid functions that the variables are randomly
divided into some subcomponents and then different basic functions are used for different
subcomponents. F20 to F29 are composition functions that merge the properties of the sub-
functions better and maintain continuity around the global/local optima. We set common
parameters as follows: number of population N = 20, number of dimensions D = 10 and
50, maximum number of function evaluation MaxFEs = 10000D, and run times R = 50.
Parameters of each algorithm are shown as follows: parameters α = 0.5, β = 0.35 in
RGA, inertia weight w = 0.9 − 0.5FEs/MaxFEs , weight parameters c1 = c2 = 2.0 in
PSO, scale factor F = 0.8, crossover rate Cr = 0.95, constant parameter c = 0.2, p = 0.2
in JADE and PJADE, and constant parameter a = 1.0, R = 200.0 in DEP and PJADE.

Table 1. Experimental results in 10 dimensions

RGA PSO DE JADE DEP PJADE

F1 2.06× 1010 4.97× 107 1.10× 102 1.81× 102 0.0 1.74× 102

F2 5.39× 104 0.0 0.0 0.0 0.0 0.0
F3 2.93× 103 1.00× 101 1.54 3.44 0.0 2.59
F4 2.52× 104 5.35× 101 8.23× 101 1.51× 102 1.86× 101 1.07× 101

F5 1.64× 10−2 2.20× 10−5 6.17× 10−4 1.33× 10−7 1.01× 10−5 4.59× 10−8

F6 2.48× 104 2.50× 101 4.28× 101 1.37× 101 3.89× 101 1.43× 101

F7 5.20× 102 3.90× 101 5.50× 101 5.50× 101 5.11× 101 3.34× 101

F8 1.03 6.36× 10−1 6.36× 10−1 6.36× 10−1 6.36× 10−1 6.36× 10−1

F9 3.36× 103 4.37× 102 2.68× 102 7.05× 101 2.50× 102 1.68× 101

F10 1.16× 109 3.52× 103 1.06× 103 3.00× 102 3.07 6.85
F11 1.06× 109 6.67× 105 1.63× 107 1.17× 104 6.43× 101 6.38× 104

F12 1.55× 109 7.44× 103 3.16× 101 1.86× 102 3.01× 101 1.33× 102

F13 9.95× 105 7.45× 101 1.60× 101 4.12 2.13× 101 4.91
F14 1.37× 109 4.25× 104 6.88× 104 3.10× 101 2.26 3.71
F15 2.81× 105 2.27× 102 1.34× 102 7.34× 101 1.65× 102 7.94× 101

F16 3.38× 1011 1.93× 101 3.77× 101 5.01× 101 1.20× 101 1.86
F17 5.83× 108 1.93× 104 3.57× 103 1.23× 102 1.01× 101 7.98
F18 2.44× 1012 1.58× 103 3.72× 103 1.42× 103 1.97 9.68× 10−1

F19 2.33× 103 3.81× 101 3.51× 101 2.80 2.63× 101 4.83× 10−1

F20 4.43× 103 2.06× 102 2.41× 102 1.16× 102 1.16× 102 1.07× 102

F21 2.21× 102 1.03× 102 1.04× 102 1.01× 102 1.00× 102 1.00× 102

F22 3.72× 103 2.97× 102 2.72× 102 2.27× 102 1.36× 102 1.08× 102

F23 6.06× 103 3.23× 102 6.78× 102 3.09× 102 1.46× 102 1.13× 102

F24 4.35× 109 9.98× 104 4.00× 102 4.56× 102 4.00× 102 4.05× 102

F25 9.72× 108 5.64× 108 1.01× 109 7.39× 108 6.73× 108 2.95× 108

F26 4.32× 102 4.27× 102 4.16× 102 4.00× 102 3.99× 102 3.89× 102

F27 9.17× 108 3.31× 105 2.54× 104 3.43× 104 3.09× 102 1.39× 102

F28 2.33× 107 6.10× 104 9.96× 102 3.84× 103 7.40× 102 1.18× 103

F29 1.74× 1010 1.78× 106 1.20× 106 8.33× 104 9.63× 105 2.70× 104

474 R. AISHIMA AND M. MAEDA

Table 2. Comparison results of PJADE with other algorithms in 10 dimensions

Algorithms + = −
RGA 29 0 0
PSO 23 5 1
DE 15 6 8

JADE 9 17 3
DEP 12 10 7

Table 3. Experimental results in 50 dimensions

RGA PSO DE JADE DEP PJADE

F1 2.73× 1011 1.61× 109 8.48× 103 1.35× 103 4.23× 103 3.55× 102

F2 4.74× 105 2.09× 103 0.0 7.30× 101 0.0 1.28× 102

F3 1.22× 105 3.37× 102 8.53× 101 5.90× 101 9.26× 101 3.44× 101

F4 2.90× 105 2.92× 103 7.65× 102 1.86× 102 1.14× 102 2.03× 102

F5 1.90× 10−1 9.92× 10−4 3.89× 10−3 2.00× 10−4 7.65× 10−5 2.78× 10−5

F6 3.86× 105 4.06× 103 9.25× 102 2.41× 102 2.96× 102 2.26× 102

F7 1.35× 104 3.41× 102 5.44× 102 6.28× 102 6.37× 102 7.46× 102

F8 5.02 4.73 4.70 4.70 4.69 4.57
F9 4.89× 104 4.19× 103 5.62× 103 4.08× 101 7.18× 103 2.27× 101

F10 3.93× 1010 3.52× 106 1.90× 105 9.41× 103 9.26× 103 1.93× 102

F11 1.22× 1011 1.41× 109 1.35× 108 3.38× 106 1.56× 105 3.40× 106

F12 2.81× 1011 1.15× 109 5.06× 107 6.74× 103 1.17× 104 3.98× 103

F13 7.15× 107 1.91× 105 1.88× 105 6.38× 105 8.24× 103 1.77× 105

F14 1.35× 1011 3.13× 106 1.31× 104 8.98× 103 9.53× 103 7.93× 103

F15 2.28× 1010 7.85× 105 1.15× 104 2.79× 102 7.21× 102 3.16× 102

F16 7.85× 1016 2.30× 104 2.63× 103 4.15× 102 6.64× 102 3.90× 102

F17 3.63× 108 6.96× 105 6.48× 104 1.06× 106 4.14× 104 7.49× 105

F18 6.07× 1015 5.06× 109 3.15× 108 3.59× 106 1.76× 104 3.10× 103

F19 4.88× 104 6.52× 102 2.63× 102 1.45× 102 1.83× 102 1.02× 102

F20 2.41× 105 3.04× 103 8.27× 102 3.66× 102 2.59× 102 2.94× 102

F21 7.03× 103 6.93× 102 3.04× 102 1.15× 102 1.66× 102 1.00× 102

F22 2.19× 105 1.01× 104 7.75× 102 7.73× 102 2.94× 102 2.96× 102

F23 1.37× 105 7.07× 103 3.45× 102 5.71× 102 2.99× 102 2.13× 102

F24 2.69× 1011 4.91× 107 5.42× 102 1.08× 106 4.96× 102 4.43× 102

F25 4.96× 1010 3.27× 1010 2.69× 1010 1.78× 1010 3.01× 109 1.13× 108

F26 1.72× 103 1.12× 103 8.72× 102 5.70× 102 5.73× 102 5.62× 102

F27 5.50× 1010 9.08× 107 8.37× 107 3.00× 105 7.74× 102 3.60× 102

F28 2.95× 1015 1.05× 108 6.87× 106 1.85× 107 6.31× 104 9.74× 104

F29 4.47× 1016 4.19× 1010 2.38× 108 6.35× 109 1.57× 106 2.81× 106

Table 4. Comparison results of PJADE with other algorithms in 50 dimensions

Algorithms + = −
RGA 29 0 0
PSO 26 0 3
DE 19 4 6

JADE 15 12 2
DEP 16 6 7

ICIC EXPRESS LETTERS, VOL.18, NO.5, 2024 475

Averages of the best solution for each algorithm in 10 and 50 dimensions are shown
in Tables 1 and 3, respectively. Tables 2 and 4 show Wilcoxon signed rank test with a
significance level of 5 percent between PJADE and other algorithms in 10 and 50 dimen-
sions, respectively. Three symbols “+, −, =” indicate that PJADE exhibits significantly
better, worse than, and equal to the competitor, respectively. In Tables 1 and 3, PJADE
has the best solution for 18 functions in both 10 and 50 dimensions. In Tables 2 and
4, PJADE shows the better performance than RGA for all functions in both 10 and 50
dimensions, and than PSO for 23 and 26 functions in 10 and 50 dimensions, respectively.
PJADE shows the better performance than DE for 15 and 19 functions in 10 and 50
dimensions, respectively, and than JADE for 9 and 15 functions in 10 and 50 dimensions,
respectively. PJADE shows the better performance than DEP for 12 and 16 functions in
10 and 50 dimensions, respectively. As a result, PJADE performs equal to or better than
the existing algorithms and shows relatively superior performances for high dimensional
problems.

5. Conclusions. In this paper, we have presented perturbation of adaptive differential
evolution with optional external archive for continuous optimization problem. By intro-
ducing perturbation to adaptive differential evolution with optional external archive, our
algorithm tended to be able to explore the solution efficiently and to avoid to local optima.
Our algorithm showed the effectiveness in comparison with real-coded genetic algorithm,
particle swarm optimization, differential evolution, adaptive differential evolution with
optional external archive, and differential evolution with perturbation using CEC2017
benchmark functions. Theoretical considerations of our algorithm remain as a future
study.

REFERENCES

[1] E. Aiyoshi and K. Yasuda, Metaheuristics and Applications, Ohmsha, Japan, 2007.
[2] M. Kubo and J. P. Pedroso, Metaheuristics: A Programing Guide, Kyoritsu Pub., 2009.
[3] I. Ono, H. Satoh and S. Kobayashi, A real-coded genetic algorithm for function optimization using

the unimodal normal distribution crossover, Journal of Japanese Society for Artificial Intelligence,
vol.14, pp.1146-1155, 1999.

[4] J. H. Seo, C. H. Im, C. G. Heo, J. K. Kim, H. K. Jung and C. G. Lee, Multimodal function
optimization based on particle swarm optimization, IEEE Trans. Magne., vol.42, no.4, 2006.

[5] R. Storn and K. Price, Differential evolution – A simple and efficient heuristic for global optimization
over continuous spaces, Journal of Global Optimization, vol.11, pp.341-359, 1997.

[6] U. Maulik and I. Saha, Automatic fuzzy clustering using modified differential evolution for image
classification, IEEE Trans. Geos. Rem. Sens., vol.48, no.9, pp.3503-3510, 2010.

[7] A. Slowik, Application of an adaptive differential evolution algorithm with multiple trial vectors to
artificial neural network training, IEEE Trans. Indus. Elec., vol.58, no.8, pp.3160-3167, 2010.

[8] Y. J. Gong and Y. Zhou, Differential evolution superpixel segmentation, IEEE Trans. Image Proc.,
vol.27, no.3, pp.1390-1404, 2018.

[9] J. Zhang and A. C. Sanderson, JADE: Adaptive differential evolution with optional external archive,
IEEE Trans. Evol. Comput., vol.13, no.5, pp.945-958, 2009.

[10] T. Muto and M. Maeda, Differential evolution with perturbation for continuous function optimiza-
tion, Nonlinear Theory and Its Applications, IEICE, vol.13, no.2, pp.239-245, 2022.

[11] N. H. Awad, M. Z. Ali, P. N. Suganthan, J. J. Liang and B. Y. Qu, Problem Definitions and
Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-
Parameter Numerical Optimization, School EEE, Nanyang Technol. Univ., Singapore, School Compt.
Inf. Syst., Technol. Ramtha, Jordan, and School Elect. Eng., Zhengzhou Univ., Zhengzhou, China,
Rep., 2016.

