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Abstract. Sensing-reasoning models are a promising way to relax the effective pertur-
bation radius for robustness certification. However, such models require the participation
of power-hungry Gaussian noise training to achieve random smoothing of each sensing-
CNN in exchange for certifiable robustness of the components. Moreover, the robustness
of this certification approach to l∞ perturbations is deficient. To avoid the sacrifice of
this high certification cost and the adaptation defect of l∞ perturbations, this paper pro-
poses an optimization model based on Lipschitz property, which bypasses the perturbation
radius by introducing Lipschitz neural networks as sensing components and solving the
perturbation radius directly with norm-bounded affine transformations and order statis-
tics property. The random smoothing training of CNN is used to trade off the certification
overhead and classification performance. Extensive experiments illustrate that our model
substantially improves the validation efficiency compared to state-of-the-art models. Our
model also obtains excellent l∞ perturbations certified accuracy and exhibits stable de-
fense against adversarial attacks.
Keywords: Certified robustness, Lipschitz neural networks, Sensing-reasoning models,
Adversarial attacks, Perturbation radius

1. Introduction. Certified robustness of deep neural networks has received significant
attention in recent years, especially in highly safety-sensitive areas such as autonomous
driving, medical diagnosis, and aviation decision making. It replaces simply improving
the empirical robustness of the model, and can effectively defend against adaptive adver-
sarial attacks that can learn robustness training methods [1,16,20]. Certified robustness
involves verifying that the model can still produce the correct output when the attacking
perturbations are limited within a parametric range [2,17,18].

Unfortunately, the perturbation bounds required for such robustness certification are
pretty narrow, while actual adversarial attacks usually impose perturbations on model
inputs larger than this bound, making it difficult to vouch for robustness certification for
a large range of perturbed input samples [19]. In recent years, researchers have proposed
sensing-reasoning models to relax the boundaries of perturbations. These models embed
exogenous knowledge behind a data-driven perception model to facilitate logical infer-
ence. By combining domain knowledge to constrain the output of the perception model,
sensing-reasoning models generalize the impact of attack perturbations on the model
output [3-6,20,23]. This approach somewhat increases the bound of the perturbation par-
adigm for which robustness certification is capable of guaranteeing, but at the expense
of certification efficiency [22]. This logical inference requires the output of many sensing
components with convolutional models as the base stem as the input to the knowledge
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inference model, and each sensing component requires several times more perturbation
training samples than normal training by random smoothing to obtain verifiable robust-
ness. For example, assuming that each input image samples 5 scrambled inputs, random
smoothing training for a perceptual model consisting of 6 convolutional components re-
quires 30 training samples [21]. In addition, this random smoothing-based training of
the sensing components can only provide 2-parameter robustness guarantees and cannot
handle infinite paradigms, which are mostly used for practical adversarial attacks.
Inspired by the Lipschitz property, the adversarial robustness of neural networks is

closely related to their Lipschitz continuity. In this paper, we propose a novel sensing-
reasoning model based on Lipschitz neural networks in order to improve the certifica-
tion efficiency of sensing components and to provide certified robustness with infinite
parametrization. We utilize the Lipschitz neural network to replace the existing percep-
tual component, and use the output of the Lipschitz neural network as the input of the
inference component. In addition, we improve the overall robustness validation for the
Lipschitz neural network-based sensing-reasoning model. Adequate experiments demon-
strate that our framework achieves competitive certification accuracy while reducing the
verification cost of the perceptual component and obtaining robust certification under
infinite parametric perturbation bounds.
The contributions of this paper are as follows.

• We propose a sensing-reasoning model based on Lipschitz neural networks that by-
passes the random smoothing training of the convolutional model. To the best of
our knowledge, this is the first time that a Lipschitz neural network is introduced
into a sensing-reasoning model.

• We provide incomplete robustness certification on our sensing-reasoning model as a
whole, where we first compute the output bound of the Lipschitz neural network and
use the output bound as the input perturbation range of the inference model.

The rest of the paper is organized as follows. We will first outline related work on
sensing-reasoning models and Lipschitz neural networks in Section 2. Then, the details
of our model will be elaborated in Section 3.1, i.e., the use of Lipschitz neural networks
instead of the sensing component of the sensing-reasoning model. Next, the certified ro-
bustness of sensing and reasoning are obtained in Section 3.2. Our work is comprehensively
evaluated in terms of both attack defense and verification accuracy in Section 4. Finally,
conclusion and future research are summarized in Section 5.

2. Related Work.

2.1. Sensing-reasoning models. Extensive previous work [3-5] has demonstrated that
sensing-reasoning models can constrain the input of neural network models by embedding
external knowledge and output robust results after being subject to perturbations. And [6]
provides the first verification of the robustness of sensing-reasoning models. Unfortunately,
this certified robustness is obtained by random smoothing training of multiple perceptual
components, which severely increases the model cost.

2.2. Lipschitz neural networks. Previous work [7-10] has illustrated that Lipschitz
networks essentially imply robustness of authentication and lead to simpler authentication
processes based on output bounds. Much of the work has dealt with the ‘2-norm Lipschitz
case by using specific mathematical properties such as spectral criteria or weight matrices.
In contrast, for the ∞ criterion, the standard Lipschitz network is not well certified.
Huster et al. [11] found that the standard Lipschitz ReLU network cannot represent simple
functions, such as absolute value functions, which inspired the first expressive GroupSort
network [12]. Recently, Zhang et al. [13] first proposed a practical 1-Lipschitz architecture
based on a special ∞-norm of neurons, called ∞-distance neurons, which can be extended
to TinyImageNet with state-of-the-art certified robustness over relaxation-based methods.
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[14] rethought Lipschitz at infinity-norm Lipschitz according to GroupSort and verified
its superiority. And to the best of our knowledge, there are no studies applying Lipschitz
properties to sensing-reasoning models.

3. Method.

3.1. The sensing-reasoning model based on Lipschitz neural network. Our mod-
el consists of a perception module, which contains n binary classifiers Li constructed by
a Lipschitz neural network, and an inference component, which is constructed by a prob-
abilistic graphical model, and an inference module, which we apply the Markov logic
network (MLN) from the work of [15].

Figure 1 shows the overall architecture of our sensing-reasoning model based on Lips-
chitz’s neural network. For each Lipschitz neural network, a unified framework is employed
from [14]. This framework is essentially a fully connected neural network with H layers.
The framework consists of three components: (i) parametric bounded affine transforma-
tion; (ii) Lipschitz unitary activation function; and (iii) sequential statistics. Specifically,
each Lipschitz sensing component is shown in Equation (1):

xhj =
(
W h
j

)T
· sort

(
laf

(
xh−1 + shj

))
,

∥∥∥W h
j

∥∥∥
1
≤ 1 (1)

Here, xhj is the value of the j-th neuron of the h-th layer of the Lipschitz neural network,
subject to the Lipschitz property that the 1-parameter of the network weight W must be
less than 1. sort(·) calculates all the order statistics of the h−1 layer x ∈ RJ , laf (·) denotes
the Lipschitz activation function, and s denotes the bias parameter of the j-th neuron
of the h-th layer. The network so propagates the H layers until the binary classification
probability is calculated.

Figure 1. The sensing-reasoning model based on Lipschitz neural network

In the sensing component illustrated in Figure 1, given an input image X, it is manually
segmented into n semantic sub-images respectively n as inputs to Li. Li to recognize the
n semantic features ei of the input image X respectively, each Lipschitz neural network
Li outputs a probability Pei(X) corresponding to the semantics, and we set a threshold
w such that when Pei(X) > w, a Boolean variable ri is output that is true, otherwise
it is false. In the reasoning component, MLN obtains n output Boolean values from the
Lipschitz neural network as interface variables. The exogenous knowledge summarized
by the experts is embedded in the internal variables and logical inference is performed
based on the Boolean values of the interface variables. The joint probability PMLN of the
MLN is calculated based on the potential function, and if PMLN is less than a threshold d,
the input X is attacked, resulting in logically mutually exclusive output results from the
n perceptual modules, and the MLN masks the interface variable that affects the joint
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probability most significantly by backward calculation through gradient propagation. Due
to space constraints, the process of calculating PMLN is not elaborated in this paper, which
is beyond the contribution.

3.2. Robustness certification of the model as a whole. This section describes the
robustness certification of our optimized sensing-reasoning model. Suppose an infinite or
two-parametric perturbation λi, ∥λi∥∞ ∨ ∥λi∥2 ≤ ε is applied to the input X, the robust-
ness certification of the sensing-reasoning model can be simply formalized as Equation
(2):

PMLN

(
{ri ⇐ Pei(X)}i∈n

)
− PMLN

(
{ri ⇐ Pei(X + λi)}i∈n

)
≤ ρ ∧ Ps−r(k1)− Ps−r(k2)

> ρ (2)

where k1 denotes the ground truth classification label of input X and k2 denotes the
maximum candidate label. Under perturbation λi, PMLN fluctuates less than ρ, and the
probability Ps−r of classifying X as k1 for the sensing-reasoning model is greater than
that of classifying it as k2 for ρ. Then ε can be proved to be the robust radius of the
model in Equation (3).

∥λi∥∞ ≤ ε

⇒ |Pei(X)− Pei (X + λi)| ≤ υ

⇒ PMLN

(
{ri ⇐ Pei(X)}i∈n

)
− PMLN

(
{ri ⇐ Pei(X + λi)}i∈n

)
≤ ρ (3)

We propagate the robustness bounds as in Equation (3) according to the division of
sensing-reasoning components to obtain bounds υ on the output of the Lipschitz network
in the sensing phase.
We illustrate how Lipschitz networks to improve the efficiency of robustness certification

and support for l∞ parametric perturbations.

Axiom 3.1. For a classifier L(X) defined by a Lipschitz neural network, it is shown to
be provably robust under perturbation ∥λi∥∞ < ψ

Q
· |Pei(k1)− Pei(k2)|. This Lipschitz

axiom can be formalized as Equation (4):

Li(X) = Li (X + λi) for all λi with ∥λi∥∞ <
ψ

Q
· |Pei(k1)− Pei(k2)| (4)

where ψ is 2
√
2/2 in perturbation in l2 parameter space and is 1/2 in l∞, and Q denotes

the Lipschitz constraint. Pei(k1) − Pei(k2) is the margin between the ground truth label
probability output by the perceptual component and the candidate label with the second
largest probability. The unknowns to be computed in the robust radius are margin of
Pei(·), compared to random smoothing for training of perturbed samples, Lipschitz net-
works only need to train the original dataset, and the robust radius can be easily derived
instead of the tedious Gaussian CDF. In addition, previous work [14] has shown that for
l∞, Lipschitz networks are internally computed equivalent to bounded l∞ of the constraint
power matrix, add with the Lipschitz activation function.
We take ψ

Q
· |Pei(k1)− Pei(k2)| as ε and compute output bounds for PMLN using La-

grangian method, as Equations (5) and (6).
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Min
{∥λi∥∞<ε}

lnPMLN

(
{ri ⇐ Pei(X + λi)}i∈n

)
≥ Min

{∥λi∥∞<ε}
lnP1

(
{λi}i∈n

)
+
∑
i

ηiλi − Max
{∥λi∥∞<ε}

lnP2

(
{λ′i}i∈n

)
−
∑
i

η′iλ
′
i (6)

where P1 and P2 are the joint probability and marginal probability of the MLN interface
variable, respectively. The maximum PMLN is constantly smaller than the ratio of the
minimum joint probability to the maximum marginal probability, and the opposite is
true for the smallest value of PMLN . ηi is the Lagrangian coefficient. We can solve it using
the method from [15].

4. Experiments.

4.1. Setup. We validated our model on MNIST and CIFAR-10 two standard image
datasets to perform classification tasks using 2 RTX4000 GPUs. Note that our experi-
ments do not involve large-scale datasets like ImageNet, since our contribution does not
lie in classification performance and scalability (previous work [14] has excellently vali-
dated performance on multiple large-scale datasets), but rather in the optimization of the
efficiency of robustness validation. Therefore, large-scale datasets are not necessary.

4.2. Efficiency of robustness certification. We test the training time and certification
time of the model on MNIST dataset and CIFAR-10 dataset using l2 and l∞ perturbation,
respectively. Table 1 and Table 2 report the experimental results of CNN and Lipschitz
neural network as sensing components after applying l2 and l∞ perturbations on the
MNIST dataset, respectively. Table 3 and Table 4 report the experimental results after
applying l2 and l∞ perturbations on the CIFAR-10 dataset, respectively.

Under l2 perturbation, our model achieves comparable classification performance and
certification accuracy to CNN. On the CIFAR-10 dataset, our model also did not lag
behind other methods. However, our model significantly outperforms the CNN-based one
in terms of training and validation time, thanks to the fact that Lipschitz neural network
validation does not require propagation of output bounds as in IBP, and does not require
adding perturbation samples to the training set, which saves 28.9% of training time, and
36.2 of validation time in CIFAR-10, and 28.9% of training time, and 78.2% of validation

Table 1. Comparison of results on the l2 perturbed MNIST dataset

Model Method
Train times λi = 0.1 λi = 0.25
Train Certify Clean PGD Certify Clean PGD Certify

CNN

IBP 21.5 4.1 94.28 84.2 91.3 93.2 94.3 91.4
CAP 18.7 − 91.67 83.1 97.4 89.0 94.2 93.1

CROWN-IBP 27.3 8.2 91.75 90.2 97.9 89.2 96.5 94.2
Random smoothing 47.9 23.7 93.66 91.3 97.4 − 96.2 90.0

Lipschitz Radius solution 10.4 3.1 93.2 93.2 94.1 92.5 95.1 98.2

Table 2. Comparison of results on the l∞ perturbed MNIST dataset

Model Method
Train times λi = 0.1 λi = 0.25
Train Certify Clean PGD Certify Clean PGD Certify

CNN

IBP 20.5 6.1 80.20 86.2 89.1 83.2 84.3 81.0
CAP 20.1 − 85.9 83.9 91.4 89.0 84.2 83.8

CROWN-IBP 32.5 7.9 88.4 85.9 88.9 89.2 86.5 84.9
Random smoothing 41.0 21.4 80.7 79.0 87.4 − 86.2 88.2

Lipschitz Radius solution 9.2 3.1 93.2 93.2 94.1 92.4 92.1 93.9
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Table 3. Comparison of results on the l2 perturbed CIFAR-10 dataset

Model Method
Train times λi = 2/255 λi = 8/255
Train Certify Clean PGD Certify Clean PGD Certify

CNN

IBP 91.5 101.1 62.7 54.2 41.3 53.7 34.3 21.5
CAP 510.7 7021.9 64.6 63.8 57.7 43.8 34.9 33.7

CROWN-IBP 97.3 48.2 61.5 65.2 42.3 42.9 36.8 26.2
Random smoothing 107.9 23.7 63.66 52.3 55.4 − 33.2 30.2

Lipschitz Radius solution 76.4 15.1 63.2 53.2 60.2 52.9 45.8 37.8

Table 4. Comparison of results on the l∞ perturbed CIFAR-10 dataset

Model Method
Train times λi = 2/255 λi = 8/255
Train Certify Clean PGD Certify Clean PGD Certify

CNN

IBP 97.5 101.6 24.68 24.2 21.3 23.6 23.6 21.4
CAP 525.1 8122.5 26.32 33.1 26.5 29.2 24.3 16.2

CROWN-IBP 95.4 43.2 23.95 30.2 27.2 26.1 25.1 17.2
Random smoothing 101.6 27.8 23.76 21.3 35.6 − 26.7 20.4

Lipschitz Radius solution 76.7 15.1 53.7 53.2 54.1 42.5 45.1 43.2

time in MNIST. Under l∞ perturbation, with perturbation radius of 0.1 and 2/255, our
model achieves a validation accuracy of 94.1 and 54.1 on the two datasets, respectively.
Perturbation radius of 0.25 and 8/255 achieved 93.9 and 43.2 certification accuracies.

4.3. Defensive capability of Lipschitz network-based under adversarial atta-
cks. We trained 8 Lipschitz neural networks as perceptual components on the CIFAR-
10 dataset, extracting 8 features ei on image categories, respectively, and poisoning a
certain size of training samples against attacks on 1 to 4 sensing components. We use the
difference between the predicted probability minimum of the ground truth label and the
probability maximum of the second candidate label as a metric to measure the defense
capability of the model. To make the metric constant > 0, we add 1 to the difference.
Figure 2 reports the difference in the probability of our model with increasing number of

attacked sensing components under l2 perturbation, which is comparable to that of CNN,
and even more stable for Lipschitz prediction when the number of attacked components

Figure 2. The defensive capabilities of CNN and Lipschitz at different
poisoned levels
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is 4. Although all models suffer from a decrease in stability due to an increase in the
number of attacks, our model still achieves superior probability differences, while the
CNN is affected by the perturbation, with the second candidate label over the true label
becoming incorrectly predicted as often as 0.35 when the number of attacks is greater
than 2.

5. Conclusions. In this paper, we propose a novel sensing-reasoning model based on the
Lipschitz property, which builds on the original framework by (1) introducing a Lipschitz
neural network as the perceptual component, bypassing the random smoothing-based
CNN Gaussian noise training, and optimizing the computational complexity of robust-
ness verification of the perceptual pipeline with better perturbation robustness at l∞
perturbation, and (2) we provide robustness verification of the pipeline as a whole for the
sensing-reasoning model. In the future, we will further investigate the optimization of the
robustness certification cost for the relaxed utilization of Lipschitz neural network.
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