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Abstract. Aiming at the wind and turbulence faced by the inspection quadrotor un-
manned aerial vehicles flying in large buildings, this paper remodels the disturbance and
designs a high-order disturbance observer (HODO) to ensure that the quadrotor can re-
sist wind disturbance. Firstly, the disturbance is modeled into linear and nonlinear types.
Then, the generalized regression neural network (GRNN) is designed to estimate the non-
linear part. Then, the HODO is designed to estimate the errors introduced by the linear
and nonlinear parts and use the Lyapunov function to prove the system’s stability. Fi-
nally, a numerical simulation is designed to verify the feasibility of the algorithm.
Keywords: High-order disturbance observer (HODO), Generalized regression neural
network (GRNN), Discrete time, Nonlinear disturbance

1. Introduction. Quadrotor unmanned aerial vehicles (QUAVs) have been widely used
in environments unsuitable for human work [1]. Due to its small size, simple structure,
and easy deployment [2], it has been widely used in power inspection [3], emergency rescue
[4], and fire detection [5]. Inspecting the facade of large buildings also needs to work in the
same human-unfriendly working environment. Generally speaking, when QUAVs flying in
the complex buildings group, due to the small space between them, there may be contin-
uous gusts and turbulence, which will affect the regular inspection work of the QUAVs
[6]. Therefore, designing and implementing a robust anti-disturbance control system has
attracted many researchers.

A lot of valuable work on the high-order disturbance observer (HODO) has been car-
ried out in recent years [7-10]. Sarsembayev et al. designed a disturbance observer-based
control (DOBC) method for permanent magnet synchronous motor (PMSM) drives [11].
It has been proved that the proposed observer evaluated the system by fewer speed er-
rors and faster response. As for the quadrotor, Ahmed et al. combined the HODO with
sliding model control (SMC) to obtain the desired tracking performance [12]. Consider-
ing the matched and mismatched disturbances, extensive simulations were conducted and
proved that the method was effective. Generalized regression neural network (GRNN)
is an application form of radius basis function neural network (RBFNN), which is mainly
used for nonlinear function estimation under discrete time conditions. A nonlinear con-
trol method combined with GRNN and SMC was used to find practical solutions for
controlling nonlinear dynamic systems [13]. The proposed design changed the GRNN to
an online adaptive controller without pretraining which means the system can obtain
nonlinear dynamic online.

The above work has demonstrated the efficient application of GRNN in nonlinear func-
tion estimation, stability control design, etc., which provides great inspiration for the
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method in this paper. Motivated by the above discussion, together with the HODO and
GRNN, an anti-disturbance control method is designed in this paper. The main contri-
butions are listed in the following.
a) Aiming at the continuous wind and turbulence from the environment, the disturbance

system is remodeled in an unknown nonlinear way to be observed.
b) A four-layer adaptive GRNN to fit the nonlinear dynamic of disturbance is designed.

Due to the lack of training data, an adaptive parameter update law is developed and
applied to the network to achieve the purpose of self-learning updates.
c) Together with this network structure, a new nth-order disturbance observer is de-

signed to estimate the linear part of the disturbance. The Lyapunov function is used to
prove that the whole system is uniformly ultimately bounded (UUB). Furthermore, the
numerical simulation proved the effectiveness. The rest of this node is organized as fol-
lows. The problem formulation and preliminaries are given in Section 2. The HODO and
the GRNN are designed in Section 3. The numerical simulation and results are presented
in Section 4. Finally, the conclusion is drawn in Section 5.

2. Problem Statement and Preliminaries. The quadrotor is always considered as a
classic nonlinear system. According to its working environment and considering the states
of each order, the model can be defined into a linear state space function at time k in the
discrete-time domain with sample time T through small disturbance linearization, which
can be expressed in the following form:{

xk+1 = Axk +Buk + dk

yk = Cxk

(1)

where xk ∈ R6 represents the state of the system consisting of the position and velocity
of the quadrotor. uk ∈ R4 and yk ∈ R6 are defined as the input and output signals,
respectively. A ∈ R6×6, B ∈ R6×4, xk ∈ R6×nd are matrices related to linearized system,
and nd is the dimension of disturbance dynamic dk. The disturbance in this paper can be
designed in the form of {

ξk+1 = Adξk

dk = Cdξk +D(xk)
(2)

where ξk ∈ Rnd represents the state of the disturbance, and Ad, Cd ∈ Rnd×nd are the linear
constant matrices. D(xk) represents a nonlinear matrix function related to the states of
the quadrotor.

Remark 2.1. The working environment considered in this paper is a narrow space between
large buildings, where the disturbance type is mostly wind disturbance. Wind disturbances
generally include continuously excited gusts and turbulence, which can be represented as
linear and nonlinear exogenous systems, respectively. The linear part is modeled as a
system (Ad, Cd). Suppose that the effect of wind disturbances on QUAVs as an energy
field, the disturbance received by the quadrotor in the wind field is related to its position
and flight speed, so the nonlinear part is represented in the form of D(xk) in the model
related to the quadrotor states.

The following assumptions and lemmas are presented and will be used in the subsequent
developments to facilitate the anti-disturbance control system design.

Assumption 2.1. [14]. The states and outputs of the quadrotor plant are all measurable.

Assumption 2.2. The disturbance and its state are unmeasurable due to the real envi-
ronment. However, they are assumed to be bounded.

Assumption 2.3. [10]. All derivatives of the disturbance exist, and all derivatives are
bounded, which means d(1), d(2), . . . , d(n) all exist and are bounded.
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Assumption 2.4. [10]. The reference trajectory r and its derivatives exist and are bound-
ed.

Lemma 2.1. As the turbulence type of wind disturbance in a continuous time zone can
be approximated by RBFNN with a bounded error, the same type of disturbance D(xk) can
also be expressed by a class of generalized regression neural network as follows:

D(z) = ΦT
kΘ(z) + ϵk (3)

where z = [z1, z2, . . . , zp]
T ∈ Rp represents the input vector of the GRNN [13], Φk ∈ RLN×N

is the weight matrix of GRNN, LN , N represent the neuron layers in pattern layer and the
input dimension, and Θ(z) = [Θ1(z),Θ2(z), . . . ,Θq(z)]

T is a function vector representing
the four layers and q neurons of GRNN. There always exists the optimal weight value Φ∗

k

of GRNN which is given by

Φ∗
k = argmin

Φ∈D

[
sup
z∈S

|D(z,Φk)−D(z)|
]

(4)

where D is a bounded close set that represents the valid set of the parameter of GRNN,
and S ∈ Rq is an allowable set of the input vector. Introducing the optimal weight matrix,
(3) yields

D(z) = Φ∗
kΘ(z) + ϵ∗k (5)

where |ϵ∗k| ≤ ϵ̄ is the optimal approximation error and ϵ̄ > 0 is the upper bound of the
error.

3. Main Results. In this section, an anti-disturbance control method will be designed
for unknown wind and turbulence based on the high-order disturbance observer and gen-
eralized regression neural network.

3.1. Design of generalized regression neural network. In order to better estimate
the dynamic of unknown nonlinear disturbances, a GRNN with a four-layer network is
used to design a nonlinear fitting estimator, including the input layer, the pattern layer,
the summation layer, and the output layer.

Input layer: The input of this layer is also the input of the network, which is defined
as xk ∈ RN×1. The output is expressed as the Euclidean distance between the input value
at the current moment and the mean value of all previous input state values, which can
be defined as the following form

Dk = d(Mk, xk) (6)

where Mk =

 µ11
k . . . µ1N

k
...

...

µLN1
k . . . µLNN

k

 ∈ RLN×N , d(m,n) represents the Euclidean distance

calculation function. Furthermore, the update law of µln
k in Mk is defined as

µln
k =

k − 1

k
µln
k−1 +

1

k
xkn (7)

where xkn represents the nth component of the input state xk at time k.
Pattern layer: The input of this layer is Dk ∈ RN×1. The output of this layer is

the calculation result of redesigned Gaussian kernel function. The data transmission is
maintained in the form of a full connection between the two layers, where the kernel
function defining the neuron is

θlck = e
−(Dl

k)
2

2σ2 , c = 1, . . . , C (8)
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where C is the number of neurons. Further design θl =
[
θl1, θl2, . . . , θlC

]
∈ R1×C and the

output of this layer Θk =
[
Θ1

k,Θ
2
k, . . . ,Θ

LN
k

]T
can be defined as

Θl
k =

∑C
c=1 θ

lc
k

C
(9)

Summation layer: The input of this layer is Θl
k ∈ RL×1. The outputs of this layer

contain SD ∈ R representing the algebraic sum of the elements in the input vector and
SN ∈ RN×1 standing for weighted input vector. They can be defined as

SDk
=

LN∑
l=1

Θl
k

SNk
= Φ̂T

kΘk

(10)

Output layer: The input of this layer is SD ∈ R and SN ∈ RN×1, and the final output
of the whole network can be defined as

D̂(xk) = Φ̂T
kΘn(xk) + ϵk (11)

where Θn(xk) =
Θk∑LN
l=1 Θl

k

. And the updating law of the weight can be expressed as

Φ̂k+1 = Φ̂k − γΘn(xk)ỹk (12)

where γ is defined as the learning rate, and the output error is defined as ỹk = yk −
rk. Based on the kernel function, we can know that there exists a border that satisfied
∥Θn(xk)∥ ≤ µ, µ > 0.

3.2. Design of high-order disturbance observer. According to the form of the dis-
turbance dynamic we modeled and the GRNN designed above, we can know that introduc-
ing GRNN to estimate the nonlinear dynamics of disturbance will inevitably introduce
unpredictable deviations; at the same time, the state ξk of the disturbance dynamics
is still unmeasured. Therefore, this paper introduces an HODO to observe the state of
disturbance dynamics.
DOB 0: First of all, the 1st-order observer can be designed as follows:

ξ̂k = zk + Lxk

zk+1 = −L
(
Axk +Buk + d̂k

)
+ Adξ̂k

d̂k = Cdξ̂k + D̂(xk)

(13)

where zk is the auxiliary variable. We can further get the derivative of the state ξ̂k in the
following form:

ξ̂k+1 = zk+1 + Lxk+1

= −L
(
Axk +Buk + d̂k

)
+ Adξ̂k + L(Axk +Buk + dk)

= Adξ̂k + L
(
Cdξ̂k + D̃(xk)

)
(14)

where D̃(xk) := D(xk)− D̂(xk) = Φ̃T
kΘn(xk). Furthermore, we can obtain the estimation

error and its derivative in the form of

ξ̃k+1 = ξk+1 + ξ̂k+1 = (Ad − LCd)ξ̃k − LD̃(xk) (15)

As we know from the previous discussion, D̃(xk) is bounded. If an appropriate L is

selected to satisfy Ad − LCd ≤ 0, then ξ̃k can ensure that it eventually converges to a
bounded area related to the bound of D̃(xk), which verifies the effectiveness of the design.
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DOB i: Based on the designed principle of DOB 0, we can generalize the design of
HODO to counteract the influence of the boundary of D̃(xk) from GRNN on the observer.

For i = 0, 1, 2, . . . , n − 1, we can get the disturbance d
(i)
k and ξ̂

(i)
k to any ith-order as the

following form: 
ξ̂
(i)
k = zik + Lixk

zik+1 = −Li

(
Axk +Buk + d̂k

)
+ Adξ̂

(i)
k − ξ̂

(i+1)
k

d̂
(i)
k = Cdξ̂

(i)
k + D̂(xk)

(16)

where zik is defined as the auxiliary variable. As described before, we can obtain the
derivative of the disturbance state and the estimation error in the form of ξ̂

(i)
k+1 = Adξ̂

(i)
k + LiCdξ̂k + LiD̃(xk)− ξ̂

(i+1)
k

ξ̃
(i)
k+1 = Adξ̃

(i)
k − LiCdξ̂k − LiD̃(xk) + ξ̂

(i+1)
k

(17)

DOB n: Unlike the ith-order disturbance observer, the nth-order disturbance observer
no longer includes the highest-order term to ensure final convergence. Therefore, the nth-
order disturbance observer can be defined as the following form:

ξ̂
(n)
k+1 = znk + Lnxk

znk+1 = −Ln

(
Axk +Buk + d̂k

)
+ Adξ̂

(n)
k

d̂
(n)
k = Cdξ̂

(n)
k + D̂(xk)

(18)

where znk is defined as the auxiliary variable and we can have the final estimation error of
the nth-order disturbance observer in the form of

ξ̃
(n)
k+1 = Adξ̃

(n)
k − LnCdξ̂k − LnD̃(xk) (19)

If we manage all these observers together, a (n + 1)-dimensional extended vector of

observer error can be defined as Ξk =
[
ξ̃k, ξ̃

(1)
k , ξ̃

(2)
k , . . . , ξ̃

(n)
k

]T
∈ Rn+1 which includes the

DOB 0. Furthermore, we can obtain its difference.

Ξk+1 =
[
ξ̃k+1, ξ̃

(1)
k+1, ξ̃

(2)
k+1, . . . , ξ̃

(n)
k+1

]T

=


Ad − L0Cd I 0 . . . 0

−L1Cd Ad I . . . 0

−L1Cd 0 Ad . . . 0
...

...
...

...

−LnCd . . . . . . . . . Ad

Ξk −


L0

L1

L2
...
Ln

 diag
(
D̃(xk)

)
n+1

(20)

Define the coefficient matrix En+1 and Ln+1 as follows:

En+1 =


Ad − L0Cd I 0 . . . 0

−L1Cd Ad I . . . 0

−L2Cd 0 Ad . . . 0
...

...
...

...

−LnCd . . . . . . . . . Ad

 , Ln+1 =


L0

L1

L2
...
Ln

 (21)

The derivative of error vector we defined can eventually be written in the following
form

Ξk+1 = En+1Ξk − Ln+1diag
(
D̃(xk)

)
n+1

(22)
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Remark 3.1. By the definition of Equation (22), the main problem is changed from the
high-order disturbance observer designed to choose proper parameters to make sure that
dynamic (22) converges to a bounded interval.

3.3. Stability analysis. According to the systems we established in this paper, the
following theorem holds.

Theorem 3.1. Consider a quadrotor system defined in Equation (1) under the disturbance
dynamic defined in Equation (2) under Assumptions 2.1, 2.2, and 2.3. The GRNN is
defined as Equations (6)-(12), the HODO is defined as Equations (16) and (18), and the
parameters will be chosen properly such that the system is UUB.

Proof: According to the previous discussion, we can have the estimation error of
GRNN based on Equation (12) and the estimation error of HODO defined in Equation
(22). To prove the stability of the whole system, the Lyapunov function can be chosen as
the following form:

Vk = ΞT
kPΞk + Φ̃T

k Φ̃k + ỹTk ỹk (23)

For the first part, we can have the derivative in the form of

∆V1k+1
= ΞT

k+1PΞk+1 − ΞT
kPΞk

= (En+1Ξk −Dk)
T (En+1Ξk −Dk)− ΞT

kPΞk

= ΞT
k

(
ET

n+1PEn+1 − P
)
Ξk +DT

k PDk + 2DT
k PEn+1Ξk (24)

where Dk := −Ln+1diag
(
D̃(xk)

)
n+1

for the convenience of writing. Furthermore, by

introducing Young’s inequality, we can obtain

∆V1k+1
≤ ΞT

k

(
ET

n+1PEn+1 − P
)
Ξk +DT

k PDk + ΞT
kE

T
n+1P

TPEn+1Ξk +DT
k IDk

≤ ΞT
k

[
ET

n+1PEn+1 + (PEn+1)
T (PEn+1)− P

]
Ξk +DT

k (P + I)Dk (25)

Introducing Equation (12) and Young’s inequality, we can obtain

∆V2k+1
= Φ̃T

k+1Φ̃k+1 − Φ̃T
k Φ̃k

=
(
Φ̂k − γΘn(xk)ỹk

)T (
Φ̂k − γΘn(xk)ỹk

)
− Φ̃T

k Φ̃k

= γ2ỹTk Θn(xk)
TΘn(xk)ỹk − 2γΦ̃T

kΘn(xk)ỹ
T
k

≤ Φ̃T
k Φ̃k − 2γ2µ2ỹTk ỹk (26)

According to the conclusion of [13], the following lemma holds.

Lemma 3.1. The tracking error ỹk+1 at time k + 1 can be expressed as

ỹk+1 ≤ ỹk −B (27)

where B = [β1, β2, . . . , βn]
T , and for i = 1, 2, . . . , n, βi is a positive constant.

Then last part of ∆V yields

∆V3k+1
= ỹTk+1ỹk+1 − ỹTk ỹk

≤ (ỹk −B)T (ỹk −B)− ỹTk ỹk

≤ ỹTk ỹk − 2BTB (28)

Finally, by introducing Equations (26), (27), and (28) into (24), we can get the deriva-
tive form of the total Lyapunov function as

∆Vk+1 ≤ ΞT
k

[
ET

n+1PEn+1 + (PEn+1)
T (PEn+1)− P

]
Ξk +DT

k (P + I)Dk + Φ̃T
k Φ̃k

− 2γ2µ2ỹTk ỹk + ỹTk ỹk − 2BTB

≤ ΞT
k

[
ET

n+1PEn+1 + (PEn+1)
T (PEn+1)− P

]
Ξk +

(
1− 2γ2µ2

)
ỹTk ỹk − 2BTB (29)
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According to Schur’s Complement Lemma, we can write the matrix of the first term as −P (PEn+1)
T (PEn+1)

T

∗ −P 0

∗ ∗ −I

 ≤ 0 (30)

We can use the LMI toolbox in Matlab to solve L to make Equation (30) established.
Together with 1− 2γ2µ2 ≤ 0, we know that the Lyapunov function of the system is UUB.

4. Simulation Example. A numerical simulation example of the quadrotor is discussed
in this section to demonstrate the effectiveness of the HODO and GRNN designed in
this paper. According to the quadrotor model given in Equation (1), the disturbance is
presented as 

ξk+1 =

 1 0 0
0 1 0
0 0 0

 ξk

dk =

 1 0 0
0 1 0
0 0 0

 ξk +

 1.5 sin t
1.5 sin t

0

 (31)

The reference signal is defined in the continuous-time zone as r =
[
15 sin

(
1
25
t
)
, 15 sin

(
1
25
t

+π
2

)
, 0.5t

]T
with the sampling interval is set to T = 0.05 s. The numerical simulation

results are shown in Figures 1 and 2.
Figure 1 shows the states of the position tracking signal under the three coordinate

axes. It can be seen from the figure that the system output can track the reference signal

(a) x-axis tracking response (b) y-axis tracking response

(c) z-axis tracking response

Figure 1. Tracking response of the position
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(a) x-axis observer comparison (b) y-axis observer comparison

(c) z-axis observer comparison

Figure 2. Disturbance observer compensation in three axes

well in three directions. Figure 2 shows the estimation of the disturbances. Since no
additional disturbance is applied in the z direction, the estimated and actual values stay
zero. However, the estimated value of disturbance in the x and y axes varies in the region
due to the estimation error brought by the high-order disturbance observer within the set
interval. The effectiveness of the algorithm designed in this paper can be concluded from
analyzing the experimental results.

5. Conclusion. In this work, a new disturbance model has been established to ensure
that the flight of QUAVs in large buildings is not disturbed by wind and turbulence. In
order to better estimate the nonlinear turbulence, a GRNN has been designed to estimate
the nonlinear part of the disturbance, and for the linear part an HODO has been designed
to ensure the stability of the system. Finally, by defining the Lyapunov function and using
Schur’s complement lemma to solve the parameters can keep the system UUB. The work
will further move on to embedded model control and its usage on this system to improve
the performance of the control system.
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