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Abstract. This paper advanced a fault detection (FD) strategy based on neural network
(NN) observer and a time-varying threshold for unknown nonlinear systems. Firstly,
NN is applied to approximating the unknown nonlinear function and FD observer is
constructed with recursive algorithm. Secondly, the time-varying thresholds are calculated
with the application of the prescribed performance bound (PPB) and the FD decision
is proposed. Fault detectability is analyzed simultaneously. The proposed time-varying
threshold method reduces false alarms induced by overshoot within transients and alerts
as early as possible compared to the method that does without considering PPB. Finally,
the availability of the approach is demonstrated by the comparison result of the simulation
instances.
Keywords: Fault detection, Nonlinear system, Time varying threshold, Neural network
observer

1. Introduction. Nonlinear systems exist in various practical control systems, and how
to solve the FD problem in nonlinear systems has become one of the popular study topics
among scholars. In long-term research and accumulation, most of the research results
express the model-based FD method [1], whose central ideas are to produce the residual
signal, calculate the threshold, and diagnose whether the fault occurs by the residual
evaluation function. However, in the existence of unknown nonlinearities, modeling the
system becomes challenging. Within this field, neural networks (NNs) can efficiently ap-
proximate complex nonlinear systems due to the basis function mapping relationship in
the hidden layer, which has shown to be extremely advantageous in FD [2-4]. For ex-
ample, the NN-based observer is constructed to solve actuator FD in an unknown input
affine nonlinear system [5]. In [6,7], based on deep NN, the fault diagnosis method is
proposed to improve the diagnosis accuracy and control distribution efficiency. Based on
the optimal interval model, an adaptive FD method is proposed to address issues with
traditional FD methods in nonlinear dynamic systems with parameter uncertainties [8].
In [9], a recurrent NN-based fault diagnosis method is proposed for control systems of
actuator fault diagnosis. The above research has made great achievements in the study
of nonlinear systems by exploiting the ability of NNs to approximate nonlinear functions.

The selection of thresholds is an important research topic for FD systems. In [10], an
adaptive threshold based on statistical methods is achieved by linearizing a nonlinear
model. A time varying threshold method has been proposed by the analytical solution
of a nonlinear system in [11]. In [12,13], the random time-varying detection thresholds
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are designed for nonlinear systems to reduce the level of false alarm probability. In re-
cent years, a PPB-based controller design approach is proposed in [14,15]. This approach
ensures that the PPB of tracking error is always satisfied during operation. In [16], the
PPB-based observer is presented for uncertain nonlinear systems and the time-varying
threshold-based FD approach is proposed with prescribed performance. To sum up, it
is worth studying how to design time-varying thresholds for unknown nonlinear systems
using prescribed performance functions.
In this paper, an FD approach based on NN observer and time-varying threshold is

presented for nonlinear systems with unmeasurable states, unknown functions and mis-
matched fault functions. The basic contributions of this paper are as below. 1) The NN
weight update laws and observer gain functions are designed by using recursive algo-
rithms. 2) Considering the prescribed performance of residual signals, a time-varying
threshold is presented based on PPB. 3) The presented time-varying threshold-based ap-
proach enhances the FD capability and reduces false alarms resulting from overshoot
during transients than that without considering PPB.
The structure of this paper is as below. Section 2 gives the system and the structure

of NN. Section 3 designs residual generator based on NN and provides the FD scheme by
calculating the time-varying threshold based on PPB. Section 4 provides the simulation
examples, and Section 5 presents the conclusions.

2. Problem Statement. Regard the following problem of fault detection for unknown
nonlinear systems:

ẋ1(t) = x2(t) + ω1(t) + ϕ1(t− T )g1 (x̄1(t))

ẋ2(t) = x3(t) + ω2(t) + ϕ2(t− T )g2 (x̄2(t))
...

ẋn−1(t) = xn(t) + ωn−1(t) + ϕn−1(t− T )gn−1 (x̄n−1(t))

ẋn(t) = a(x) + u(t) + ωn(t) + ϕn(t− T )gn (x(t))

y(t) = x1(t), (1)

where x(t) = [x1, x2, . . . , xn]
T ∈ Rn is the system state, u(t) ∈ R is the input of the

system. ωi(t) (i = 1, 2, . . . , n) are the disturbance uncertainties. a(x) is unknown non-

linear function. Let x̄i(t) = [x1, x2, . . . , xi]
T ∈ Ri, i = 1, 2, . . . , n, and ϕi(t − T )gi (x̄i(t)),

i = 1, 2, . . . , n describes the fault function. The following assumptions are given for the
system (1).

Assumption 2.1. The unknown interferences ωi(t) meet |ωi(t)| ≤ Gi, i = 1, 2, . . . , n
with Gi being known positive constants.

Considering the unknown nonlinear function within the system, the NN is applied to
approximating a(x) as a(x) = W ∗TS(x) + δ, where S(x) = [Sj(x)]

T is the Gaussian basis

function output, Sj(x) = exp
(

−∥x−µj∥2

2ν2j

)
, W ∗ is the ideal weights, and δ is the bounded

NN approximation error.

Assumption 2.2. The existence of normal numbers W1 and S1 makes the ideal weights
W ∗ and the activation function S(x) are bounded, that is, ∥W ∗∥ ≤ W1 and ∥S(x)∥ ≤ S1.

Introduce the prescribed performance function described in [14, 15], which is selected
as φ(t) = (φ0 − φ∞) e−λt+φ∞, where φ0, φ∞ and λ are the selectable positive constants.
An error conversion method is presented to convert the residual signal, which is limited
by the prescribed performance, into an equivalent unconstrained signal. Define

ey(t) = φ(t)P (ξ), (2)



ICIC EXPRESS LETTERS, VOL.18, NO.5, 2024 505

where ξ(t) is the converted residual and P (ξ) is a rigorously increasing function. More-
over, the inverse conversion is ξ(t) = P−1

(
ey(t)

/
φ(t)

)
. The differential conversion of the

residual ey(t) is shown as below:

ξ̇(t) = ėy(t)− φ̇(t)P (ξ)/φ(t)(∂P/∂ξ). (3)

3. Main Results.

3.1. Neural network residual generator. Based on the NN observer, the structure of
the residual generator is designed as below:

˙̂x1(t) = x̂2(t) +NnΨ(·)
˙̂x2(t) = x̂3(t) +Nn−1Ψ(·)

...
˙̂xn−1(t) = x̂n(t) +N2Ψ(·)
˙̂xn(t) = â(x̂) + u(t) +N1Ψ(·)
ŷ(t) = x̂1(t), (4)

whereN1, N2, . . . , Nn and Ψ(·) are the observer gain and nonlinear function to be designed,
respectively. â(x̂) is an online approximation model with adjustable weights as below:

â(x̂) = Ŵ T (t)S(x̂) . (5)

Defining ei(t) = x̂i(t)− xi(t), i = 1, 2, . . . , n and W̃ = Ŵ −W ∗, the error dynamics are
obtained as below:

ė1(t) = e2(t) +NnΨ(·)− ω1(t)

ė2(t) = e3(t) +Nn−1Ψ(·)− ω2(t)
...

ėn−1(t) = en(t) +N2Ψ(·)− ωn−1(t)

ėn(t) = ∆a(x) +N1Ψ(·)− ωn(t)

ey(t) = ŷ(t)− y(t), (6)

where ∆a(x) = â(x̂)− a(x) = W̃ T (t)S(x̂) + η − δ, η = W T S̃, η is bounded.
Considering the conversion (2) and (3), the new residual dynamics is given as below:

ξ̇(t) =
1

φ(t)(∂P/∂ξ)
[ėy(t)− φ̇(t)P (ξ)]

=
1

φ(t)(∂P/∂ξ)
[e2(t) +NnΨ(·)− φ̇(t)P (ξ)− ω1(t)] . (7)

The following assumptions are required before proceeding with the observer design.

Assumption 3.1. There exist a constant N1 and positive constants ν1, ℓ1, θ, a C1 func-

tion V1

(
W̃n(t), en(t)

)
which is quadratic in en(t), satisfying

DW̃n
V1 · ˙̃Wn(t) +DenV1 · ėn(t)

= DW̃n
V1 ·

[
−
(
en(t)Sn

(
ˆ̄xn(t)

)
+ Ŵn

)]
+DenV1 ·

[
W̃ T

n (t)Sn

(
ˆ̄xn(t)

)
+ η − δ −N1en(t)

]
≤ −ν1|en(t)|2 − ℓ1

∣∣∣W̃n(t)
∣∣∣2 + θ. (8)

The theorem below presents the gain function of the observer, the NN weight update
law, and stability analysis results.
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Theorem 3.1. Regard the system (1) satisfying Assumptions 2.1, 2.2 and 3.1, the NN
weight update law is designed

˙̂
W1 = −

(
e1S1(x̂) + Ŵ1

)
, (9)

the residual generator (4) with N1 = q1q2 · · · qn−1, N2 = q2 · · · qn−1, . . . , Nn−1 = qn−1, Nn =
1 and

Ψ(·) = −φ(t)(∂P/∂ξ)ξ(t)qn − φ̇(t)P (ξ)− Ŵ1(t)S1(x̂(t)) . (10)

If there exist positive constants ζ1, ζ2, . . . , ζ4n+2, z1, z2, . . . , zn−1 satisfying q2, . . . , qi+1 (3 ≤
i ≤ n − 2) and qn, then en(t), . . . , e2(t), ξ(t) and W̃1, W̃2, . . . , W̃n are uniformly bounded
in the absence of faults, and ey is within the predetermined PPB.

Proof: Step 1. Let e1(t) = e2(t) = · · · = en−2(t) = 0, N2 = 1, and the last two
equations of (6) are

ėn−1(t) = en(t) + Ψ(·)− ωn−1(t)

ėn(t) = ∆a(x) +N1Ψ(·)− ωn(t). (11)

Using coordinate conversion

[
ςn−1(t)

ςn(t)

]
= K1

[
en−1(t)

en(t)

]
, where K1 =

[
1 0

−N1 1

]
,

then Equation (11) is converted as below:

ζ̇n−1(t) = ςn(t) +N1ςn−1(t) + Ψ(·)− ωn−1(t)ζ̇n(t)

= ∆a(x)−N2
1 ςn−1(t)−N1ςn(t) +N1ωn−1(t)− ωn(t). (12)

Constructing a virtual NN weight update law as
˙̂
Wn−1 = −

(
ςn−1(t)Sn−1

(
ˆ̄xn−1

)
+ Ŵn−1

)
and choosing the Lyapunov function

V̄2

(
W̃n(t), W̃n−1(t), ςn(t), ςn−1(t)

)
= V̄1

(
W̃n(t), ςn(t)

)
+

1

2
ςTn−1(t)ςn−1(t) +

1

2
W̃ T

n−1W̃n−1,

the derivative of V̄2 is as below:

˙̄V2 ≤ −ν̃2 |ζn|2 − ℓ̃2

∣∣∣W̃n

∣∣∣2 + ( 1

ζ1
+

ζ2
4

(
µ2N

2
1 + 1

)2
+

1

ζ3
+

1

ζ5
+

1

ζ6
+N1

)
|ςn−1|2

−
(
1

2
− ζ5

4
|Sn−1|2 −

ζ6
4
|Sn−1|2

) ∣∣∣W̃n−1

∣∣∣2 + Ḡ2(Gn, Gn−1) + ζTn−1Ψ(·)

+ ζTn−1Ŵn−1Sn−1

(
ˆ̄xn−1

)
, (13)

where ν̃2 = ν1 − 1
ζ2
− 1

ζ4
> 0, ℓ̃2 = ℓ1 − ζ1

4
µ2
1N

2
1 |Sn|2 > 0 and

Ḡ2(Gn, Gn−1) =
ζ4
4
µ2
2 (N1Gn−1 +Gn)

2 +
ζ3
4
G2

n−1 + θ +
1

2
∥Wn−1∥2 +

ζ6
4
∥Wn−1∥2 |Sn−1|2.

Let 1
ζ1
+ ζ2

4
(µ2N

2
1 + 1)

2
+ 1

ζ3
+ 1

ζ5
+ 1

ζ6
+N1+z1 = q2 and Ψ(·) = −q2ζn−1−Ŵn−1Sn−1

(
ˆ̄xn−1

)
,

˙̄V2 can be written as

˙̄V2 ≤ −ν̃2 |ςn|2 − z1 |ζn−1|2 − ℓ̃2

∣∣∣W̃n

∣∣∣2 − (1

2
− ζ5

4
|Sn−1|2 −

ζ6
4
|Sn−1|2

) ∣∣∣W̃n−1

∣∣∣2
+ Ḡ2(Gn, Gn−1)

≤ −ν̄2∥(ςn, ζn−1)∥2 − ℓ̄2

∥∥∥(W̃n, W̃n−1

)∥∥∥2 + Ḡ2 (Gn, Gn−1) . (14)

Step i (3 ≤ i ≤ n−2). Selecting the NN weight update law as
˙̂
Wn−i = −

(
en−iSn−i

(
ˆ̄xn−i

)
+ Ŵn−i

)
, choosing the Lyapunov function V̄i+1 = V̄i +

1
2
ςTn−i(t)ςn−i(t) +

1
2
W̃ T

n−iW̃n−i,
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designing the observer gain ζ4i−1

4
+ 1

ζ4i
+ 1

ζ4i+1
+ 1

ζ4i+2
+ N1 + zi = qi+1 and Ψ(∗) =

−qi+1en−i(t)− Ŵn−i(t)Sn−i

(
ˆ̄xn−i(t)

)
, ˙̄Vi+1 can rewrite

˙̄Vi+1 ≤ −νi+1∥(en, . . . , en−i)∥2 − β̄i+1

∥∥∥(W̃n, . . . , W̃n−i

)∥∥∥2 + Ḡi+1(Gn, . . . , Gn−i), (15)

where ν̄i − 1
ζ4i−1

> 0, ν̄i+1 = min
{
ν̄i, ν̄i − 1

ζ4i−1
, κi

}
, νi+1 = ν̄i+1 ∥Ki∥2 and

ℓ̄i+1 = min

{
ℓ̄i,

1

2
− ζ4i+1

4
|Sn−i|2 −

ζ4i+2

4
|Sn−i|2

}
.

Step n − 1. Let N1 = q1q2 · · · qn−1, N2 = q2 · · · qn−1, . . . , Nn = 1. In this step, the
recursive algorithm obtains implementable NN weight update laws (10). According to
the coordinate conversion, it is clear that ξ1(t) = ς1(t).

Constructing the Lyapunov function

V̄n

(
W̃ (t), ς(t)

)
= V̄n−1

(
W̃n(t), . . . , W̃2(t), ςn(t), . . . , ς2(t)

)
+

1

2
ςT1 (t)ς1(t) +

1

2
W̃ T

1 W̃1,

the derivative of V̄n can be obtained and let

1

ζ4n

1

φ2(∂P/∂ξ)2
+

ζ4n−1

4

1

φ2(∂P/∂ξ)2
+

1

ζ4n+1

1

φ2(∂P/∂ξ)2
+

1

ζ4n+2

1

φ2(∂P/∂ξ)2

+
N1

φ(∂P/∂ξ)
+ zn−1 = qn. (16)

By designing Ψ(·) and qn satisfying Equations (10) and (16), respectively, ˙̄Vn can be
written as

˙̄Vn ≤ −ν̄n−1

(
|ςn|2 + · · ·+ |ς3|2

)
− ν̂n−1 |ς2|2 − zn−1 |ς1|2 − ℓ̄n−1

(∣∣∣W̃n

∣∣∣2 + · · ·+
∣∣∣W̃3

∣∣∣2)
− ℓ̂n−1

∣∣∣W̃2

∣∣∣2 − σ
∥∥∥W̃1

∥∥∥2 + Ḡn(Gn, . . . , G1) , (17)

where ℓ̂n−1 = ℓ̄n−1 − 1
2
+ ζ4n−3+ζ4n−2

4
|S2|2 > 0, σ = 1

2
− ζ4n+1

4
|S1|2 − ζ4n+2

4
|S1|2, ν̂n−1 =

ν̄n−1− ζ4n−1

4
> 0, Ḡn(Gn, . . . , G1) = Ḡn−1(Gn, . . . , G2)+

ζ4n
4
G2

1+
1
2
∥W1∥2+ ζ4n+2

4
∥W1∥2 |S1|2.

It follows immediately from Equation (17) that ˙̄Vn is negative outside the tight set of
Σ(ς1,ς2,...,ςn) and Σ(W̃1,W̃2,...,W̃n):

Σ(ς1,ς2,...,ςn)

=

(ξ, ς2, . . . , ςn)

∣∣∣∣∣∣|ξ| ≤
√

Ḡn

zn−1

, |ς2| ≤

√
Ḡn

ν̂n−1

, ∥(ς3, . . . , ςn)∥ ≤

√
Ḡn

ν̄n−1

 , (18)

Σ(W̃1,W̃2,...,W̃n)

=

{(
W̃1, W̃2, . . . , W̃n

) ∣∣∣∣∣∣∣∣W̃1

∣∣∣≤√Ḡn

σ
,
∣∣∣W̃2

∣∣∣ ≤√ Ḡn

ℓ̂n−1

,
∥∥∥(W̃3, . . . , W̃n

)∥∥∥ ≤

√
Ḡn

ℓ̄n−1

}
, (19)

that is, (ξ, ς2, . . . , ςn) and
(
W̃1, W̃2, . . . , W̃n

)
are uniformly bounded. According to the

coordinate conversion, it follows that (ξ, e2, . . . , en) is also uniformly bounded and ey(t)
is within the pre-given PPB.

Corollary 3.1. Regard Equation (1) satisfying Assumptions 2.1, 2.2 and 3.1, the NN

weight update law is designed as
˙̂
W1 = −

(
e1S1

(
ˆ̄x1

)
+ Ŵ1

)
, the residual generator (4)

with N1 = q1q2 · · · qn−1, N2 = q2 · · · qn−1, . . . , Nn = 1 and

Ψ′(∗) = −q′nς1(t)− Ŵ1(t)S1(x̂(t)) (20)
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If there exist positive constants ζ1, ζ2, . . . , ζ4n+2, z1, z2, . . . , zn−1, then en(t), . . . , e2(t), ey(t)
are uniformly bounded in the absence of faults and the residual signal satisfies |ey(t)| ≤√

Ḡn

zn−1
.

Proof: Depending on Equation (6) and applying the identical design steps from Step
1 to Step n− 2 in Theorem 3.1, the difference is Step n− 1: Let N1 = q1q2 · · · qn−1, N2 =
q2 · · · qn−1, . . . , Nn = 1, all equations of (6) can be obtained. It is apparent that e1(t) =

ς1(t). Selecting the Lyapunov function V̄n

(
W̃ (t), ς(t)

)
= V̄n−1

(
W̃n(t), . . . , W̃2(t), ςn(t),

. . . , ς2(t)
)
+ 1

2
ςT1 (t)ς1(t)+

1
2
W̃ T

1 W̃1, the derivative of V̄n along the solution of Equation (6)

can be obtained. Let
ζ4n−1

4
+

1

ζ4n
+

1

ζ4n+1

+
1

ζ4n+2

+N1 + zn−1 = q′n, (21)

constructing Ψ′(·) and q′n satisfying Equations (20) and (21), respectively, ˙̄Vn is given as
below:

˙̄Vn ≤ −ν̄n−1

(
|ςn|2 + · · ·+ |ς3|2

)
− ν̂n−1|ς2|2 − zn−1|ς1|2 − ℓ̄n−1

(∥∥∥W̃n

∥∥∥2 + · · ·+
∥∥∥W̃3

∥∥∥2)
− ℓ̂n−1

∥∥∥W̃2

∥∥∥2 − σ
∥∥∥W̃1

∥∥∥2 + Ḡn (Gn, . . . , G1) , (22)

which means that ˙̄Vn is negative beyond the following compact set (19) and (23):

Σ(ς1,ς2,...,ςn)

=

(ς1, ς2, . . . , ςn)

∣∣∣∣∣∣|ς1|≤
√

Ḡn

zn−1

,|ς2| ≤

√
Ḡn

ν̂n−1

, ∥(ς3, . . . , ςn)∥ ≤

√
Ḡn

ν̄n−1

 . (23)

This proof is completed.

3.2. Fault detection analysis. In this section, the FD strategy is given the NN-based
observer in Theorem 3.1. Retrospecting the error conversion ey(t) = φ(t)P (ξ) and defining

ξ̄ =
√

Ḡn

zn−1
, it is true that |P (ξ)| ≤ P

(
ξ̄
)
; therefore, |ey(t)| ≤ φ(t)P

(
ξ̄
)
.

The fault detection decision logic: The fault alarm is generated when ey(t) is
beyond of the following threshold range: φ(t)P

(
ξ̄
)
< ey(t) < −φ(t)P

(
ξ̄
)
.

Similar to [17], the following theorem provides detectability conditions, based on the
above analysis.

Theorem 3.2. If there exists [T + t1, T + t2] (t2 > t1 > 0) such that the fault satisfies∥∥∥∥∫ T+t2

T+t1

CeA(T+t2−τ)ϕ(t− T )g(x(τ))dτ

∥∥∥∥
≥
(
1 + ke−γ(t2−t1)

)
φ(t)P

(
ξ̄
)
+ ke−γ(t2−~1)

n∑
i=1

ςi +
kϑ

γ

[
1− e−γ(t2−t1)

]
+(t2 − t1)

n∑
i=1

Gi, (24)

then the fault can be monitored, that is |ey(T + t2)| > φ(t)P
(
ξ̄
)
.

Proof: Write Equation (6) in the compact form:

ė(t) = Ae(t) + ∆a
(
W̃ (t), e(t)

)
− ϕ(t− T )g(x(t))− ω(t)

r(t) = Ce(t). (25)
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The solution of Equation (25) is

ey(T + t2) = CeA(t2−t1)e(T + t1)

+

∫ T+t2

T+t1

CeA(T+t2−τ)
[
∆a
(
W̃ (τ), x(τ)

)
− ω(τ)− ϕ(t− T )g(x(τ))

]
dτ.

From Theorem 3.1, we have |ey (T + t1)| ≤ φ(t)P
(
ξ̄
)
and |ei(T + t1)| ≤ ϵi (i = 2, . . . , n),

where ϵi denote the bounds of the estimation errors, and then
∥∥∥∆a

(
W̃ (t), x(t)

)∥∥∥ ≤ ϑ

holds. Thus, it is clear that

|ey(T + t2)| ≥ −ke−γ(t2−t1)

(
φ(t)P

(
ξ̄
)
+

n∑
i=2

ϵi

)
− kϑ

γ

[
1− e−γ(t2−t1)

]
− (t2 − t1)

n∑
i=1

Gi

+

∥∥∥∥∫ T+t2

T+t1

CeA(T+t2−τ)ϕ(t− T )g(x(τ))dτ

∥∥∥∥ ,
where k > 0 and γ > 0, so that

∥∥CeAt
∥∥ ≤ ke−γt. If the faults meet Equation (25),

|ey(T + t2)| > φ(t)P
(
ξ̄
)
can be implemented directly.

4. Simulation Results. Consider the unknown nonlinear systems below:

ẋ1(t) = x2(t) + 0.5 sin(26t) + 20.5 cos
(
100x2

1(t)
)
ϕ1(t− T )

ẋ2(t) = x3(t) + 0.1 cos(20t) + 10.8 sin(20x1(t)x2(t)) + 2.2 sin(100x1(t))ϕ2(t− T )

ẋ3(t) = a(x) + u(t) + cos(30t) + 1.9 sin(50x1(t)x3(t))

+ 3.1 sin(200x1(t)x2(t))ϕ3(t− T )y(t), (26)

where a(x) = − exp
(
−∥x1−1∥2

25

)
+ 0.01 sin(0.01x2), ϕi(t − T ) =

{
0, t < T
1− e−∆i(t−T ), t ≥ T

(i = 1, 2, 3), T = 5 s, ∆1 = 0.07, ∆2 = 0.06, ∆3 = 0.03, G1 = 0.1, G2 = 0.05, G3 = 1, the
input vector of the NN is [x̂1 x̂2] and the NN structure is 2-7-1. In the network design,
taking c1 =

1
3
[−3 −2 −1 0 1 2 3], c2 =

2
3
[−3 −2 −1 0 1 2 3] and b = 10, and the initial NN

weights are 0. Constructing V1 =
1
2
e23 +

1
2
W̃ 2

3 and choosing N1 = 2, it follows that q1 = 2,

ν1 = 3, ℓ1 = 0.5. Choose ζ2 = 1.5, ζ4 = 0.5 to satisfy ν1 − 1
ζ2
− 1

ζ4
> 0, and set ζ1 = 10.5,

ζ3 = 5, ζ5 = 15, ζ6 = 10, z1 = 0.1. Choose ζ7 = 10 to satisfy ν̄2 − 1
2ζ7

> 0, set ζ8 = 0.2,

ζ9 = 15, ζ10 = 5, z2 = 80, and the NN-based observers can be built by Theorem 3.1 and
Corollary 3.1. The initial conditions are x(0) = [0.5 0.2 0.1] and x̂(0) = [0.1 0.5 0.2], and
the input is 20 sin(5t).

Calculating ξ̄ =
√

Ḡ3

z2
, thus the time-varying thresholds can be achieved. The results

of the simulation are illustrated in Figure 1 and Figure 2. The residual and time-varying
thresholds obtained from Theorem 3.1 are given in Figure 1. From Figure 1, it is shown
that the residual is over the lower threshold −φ(t)P

(
ξ̄
)
, which means that the presented

FD method can successfully discover faults after T > 7 s. To prove the advantages of
the method presented in Theorem 3.1, Figure 2 illustrates the tracks of signals obtained

from Corollary 3.1. While the constant thresholds
√

Ḡ3

z2
and −

√
Ḡ3

z2
in Corollary 3.1 can

detect faults after T > 12 s, the false alarms are released during transients caused by
overshoot before faults occur. The time-varying thresholds in Figure 1 can detect faults
faster than the results in Figure 2. Therefore, it can be concluded that the fault detection
observer based on time-varying threshold designed by Theorem 3.1 in the same nonlinear
system can not only reduce the false alarm caused by overshoot in the transient process,
but also reduce the false alarm in the steady-state process and detect the faults as early
as possible.
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Figure 1. The signals yielded by Theorem 3.1

Figure 2. The signals yielded by Corollary 3.1

5. Conclusions. This paper gives an FD observer method based on NNs and recursive
algorithms for the unknown nonlinear systems. A residual generator is constructed using
the NN and recursive algorithm to ensure the residual is inside the PPB in the absence of
faults. The time-varying thresholds based on the PPB can detect faults faster and reduce
false alarms resulting from overshoot. The validity of the approach is confirmed by the
simulation results. Further research work includes extending the proposed method to the
fault-tolerant control problem of unknown nonlinear systems.
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