
ICIC Express Letters ICIC International c⃝2024 ISSN 1881-803X
Volume 18, Number 5, May 2024 pp. 521–530

SOFTWARE PRODUCT LINE DOMAIN ENGINEERING FOR SUPPLY
CHAIN OF SMALL AND MEDIUM ENTERPRISE MANUFACTURER

Oman Komarudin, Eko Kuswardono Budiardjo∗ and Ade Azurat

Faculty of Computer Science
Universitas Indonesia

Jl. Margonda Raya, Pondok Cina, Depok 16424, Indonesia
oman.komarudin@ui.ac.id; ade@cs.ui.ac.id
∗Corresponding author: eko@cs.ui.ac.id

Received May 2023; accepted August 2023

Abstract. The Industry 4.0 era is challenging manufacturing industries to improve
their flexibility and responsiveness to change various needs by upgrading their opera-
tions strategies, methods, and technologies. Software product line engineering (SPLE) is
a promising software development paradigm that satisfies those needs. Several industries
that have adopted this concept have had promising results. However, different industries,
especially small and medium enterprise (SME) manufacturing, have applied different ap-
proaches because there is no standardized flow applicable for different types of settings.
This study arranges procedures for implementing SPLE in certain domains with an ex-
tractive approach. Requirements engineering is carried out at each SME manufacturer
referring to their respective supply chains. Each identified application feature is mapped
to build a feature model. The extended unified modeling language for delta oriented pro-
gramming profile is used to represent the results of requirement gathering for a more
abstract architectural design. The result of this research is an approach to performing
domain engineering of SPLE for SME manufacturing.
Keywords: Software product line engineering, Software engineering, Internal supply
chain, Small and medium enterprises, Manufacturing

1. Introduction. Industry 4.0 is challenging industries to keep up with changes continu-
ously. Changes can be made by improving strategy, methods, or technology [1]. Complex
and continuously changing business environments and customer demands, as well as the
need for flexibility and responsiveness in companies, are training the spotlight on to ad-
vanced technological improvements to supply chains [2]. Forecasting tools and supply
chain data can help predictive maintenance be planned in advance, reducing downtime.
Supply chain software enables manufactures to support their activities and enhance the
productivity and profits [3]. Manufacturers are encouraged to endorse their strategies and
software solutions to attain competitive performance goals [4].

Enterprises resources planning (ERP) and other commercial off-the-self (COTS) pro-
prietaries provide software solutions for supply chain requirements [5]. Manufacturers use
ERP systems as software solutions to effectively manage their business processes. The
effective adoption and deployment of ERP systems is essential for the survival and com-
petitiveness of enterprises [6]. Alaskari et al. [6] propose a framework for implementation
of ERP in small and medium enterprises (SMEs). However, it is extremely difficult to
choose and operate an ERP system, particularly given the large costs involved in the
procedure. Furthermore, SMEs typically make small investments in technology [7]. Tai-
lored software development is a common industry practice for SMEs to meet the needs
of supporting software and considering the simplicity, maintainability and certification of
the software [8].

DOI: 10.24507/icicel.18.05.521

521



522 O. KOMARUDIN, E. K. BUDIARDJO AND A. AZURAT

Manufacturing companies are similar in their supply chain activities, producing goods
from raw materials into final products. Generally, their activities consist of raw goods
procurement, production processes, and distribution [9]. The similarities of manufacturing
processes provide a great possibility in the creation of software through clone-and-own.
Developers create software variants with similar needs by adopting existing software and
then customizing it to meet new requirements. The result of this clone-and-own activity
is several software products derived from the same code, but the end result is several
software variants that can be very different from other products [10].
Corporate strategy changes over time, following continuous developments caused by

both internal and external changes. This development aims to maintain the continuity
of the company [11]. The requirements constantly increase in complexity and diversity
due to more demanding customers, evolving technologies, and business strategies [12].
As with SMEs in general, SME manufacturers supply chains operate in dynamic and
rapidly changing environments to maintain their existence [6]. These changes in strategy
drive modifications to the software utilized by each SME manufacturer. Software created
through a clone-and-own technique might be increasingly distinctive from the original.
The more variants that are made, the more complex the documentation and maintenance
[8].
Software product lines aim to support the development of variant software through

systematic reuse of shared assets [13, 14, 15]. SPLE by its nature is a software development
paradigm that allows exploitation of various software requirements’ commonalities and
variabilities, thus making them into reusable assets [16]. This reusability feature contrasts
with single system development and gives SPLE more advantages in flexibility for future
development when changes are inevitable [10]. SPLE is an efficient method of developing a
range of related products. It maximizes product commonalities while still acknowledging
their differences, unlike traditional product-centric development [14].
This research focuses on how to implement SPLE in the supply chain of SME manufac-

turers. Based on Porter’s value chain [9, 11, 17], the internal supply chain is the extensive
factor influencing the company’s business strategy. The internal supply chain consists of
processes: procurement of raw material, production processes, and distribution. This re-
search outlines the steps for applying SPLE to internal supply chain processes of SME
manufacturing.
The following organizational structure is used in this essay. Section 1 outlines cutting-

edge literature on software product line engineering for SMEs. Section 2 presents the
fundamental literature on software product line processes. Section 3 discusses how to
use standard tools to perform SPLE for SME manufacturers. This section describes how
to use UML-DOP (unified modeling language-delta oriented programming) to determine
requirements in an SPLE manner and build software architecture. Section 4 depicts the
evaluation of the suggested framework. Finally, Section 5 concludes the research.

2. Software Product Line Engineering. SPLE has gained significant attention over
the years as a strategic approach that incorporates business, organization, and technology
in such a way as to achieve high effectiveness and efficiency [19, 20]. SPLE categorizes its
development phase into two major domains [15, 16]: domain engineering, and application
engineering. Domain engineering is responsible for creating a reusable platform from var-
ious requirements, whereas application engineering obtains applications from a reusable
platform based on the needs of each software product line.
Variability models are created in the early stages of domain engineering based on re-

quirements. The domain implementation translates the variability of the model into ar-
chitectural design. Domain realization implements the reusable software components of
the architectural design. Requirements analysis explores the demands of individual cus-
tomers as part of application engineering. Product derivation is the production process



ICIC EXPRESS LETTERS, VOL.18, NO.5, 2024 523

of application engineering in which reusable artifacts are combined based on the results
of the requirements analysis.

Domain analysis is a form of requirements engineering that applies to an entire product
line. This step determines the domain’s scope, that is, which products should be covered
by the product line. Domain analysis also determines what features are relevant and
should be developed as reusable artifacts. An extractive approach is the most common
way to adopt a software product line with many system variants [21].

To determine the scope for SMEs SPLE, advanced user-based collaborative filtering
(advanced UCF) is proposed. The advanced UCF algorithm is an enhancement to the
UCF algorithm that takes SMEs’ characteristics into account while scoping the needs for
SPLE. Advanced UCF is based on the UCF and is thought to be more appropriate for
application in this SME case study [22]. In line with advanced UCF, Komarudin et al. [24]
define the domain analysis steps as follows: 1) recognize all features of all requirements
from each business process; 2) categorize them into feature groups depending on their
areas of duty; 3) map each feature’s presence across all products on a product roadmap
matrix; 4) analyze the resulting product roadmap to find commonality and variability
features; 5) transform the results into a feature model.

The results of domain analysis are typically described in a feature model [16]. With
the introduction of the cardinality idea to a feature model, the cardinality based feature
model (CBFM) as an extension of the original feature oriented domain analysis (FODA),
is more expressive in describing commonality and variability in SPLE [25].

In every software development project, defining the requirements and designing software
architecture are inextricably linked processes [26]. The variability modeling that is defined
on the domain requirements engineering is used as an input reference to determine the
software architecture [15]. The translation between variability modeling and the software
architecture development process is a challenge in SPLE [20]. The architectural design
must be able to accommodate the flexibility that the SPLE concept uses to its advantage
[27]. The design must also accommodate changes and additions to requirements in the
future [28].

Several approaches in mapping variability models into implementation artefacts have
been proposed. The conditional compilation (CC) concept uses #ifdefs to represent the
variability model. Feature-oriented programming (FOP) proposes a more systematic ap-
proach to creating reusable artefacts than CC, which uses #ifdefs in the code [29]. FOP
maps the features in the variability model using feature modules [16]. Delta oriented pro-
gramming (DOP) implements variability models of SPL using the delta approach [30].
DOP represents the product line using a core module and sets of delta modules that
allow a flexible “n-to-m” mapping of feature variants in variability model.

Unified modeling language (UML) is a standard approach for modeling a software
system. Object management groups (OMGs) provide a mechanism to allow modification
of UML syntax in particular application domains, called a UML profile [8]. A UML profile
is a set of extensions that allow customization: stereotypes, tagged values, and constraints.
Setyautami et al. [31] proposed a mechanism utilizing the UML profile to represent the
architecture of DOP that supports SPL, called a UML-DOP profile. Each element in DOP
extends a UML meta class and is translated to stereotypes, tagged values, and constraints.

3. Software Product Line Engineering for Supply Chain of SME Manufactur-
ers. This section describes the implementation of domain engineering for internal supply
chains SME manufacturers based on Figure 1. The initial phase consists of conducting
domain requirements engineering to identify the feature model, which is subsequently
translated into architectural design and realization.



524 O. KOMARUDIN, E. K. BUDIARDJO AND A. AZURAT

Figure 1. Domain engineering process for supply chain of SME size man-
ufacture [15]

3.1. Domain requirements. This subsection describes the requirement elicitation pro-
cess for each company with its own characteristics. This process analyzes the requirements
of the end-to-end business flow that occurs within a manufacturing company. We capture
and analyze the similarities and differences of each company to construct a requirements
artifact.

3.1.1. Identification of the business requirements. The activities of a manufacturing com-
pany consist of receiving and processing product demands, managing inventory, processing
materials into products, and delivering products to customers [23]. Even though manu-
facturers engage in common activities, each manufacturer has a different way of carrying
out its activities, affecting the needs of the company in the system. The difference in the
needs of each company lies in how each department performs its activities. This difference
is due to many factors such as business strategy, market conditions, internal policies, and
various external factors [24].
Based on the general needs of SME sized manufacturing internal supply chains, we cat-

egorize these needs into three main business processes: 1) material management: this pro-
cess handles the materials used in manufacturing, including raw materials, semi-finished
goods, finished goods, and other material components; 2) planning and control: this pro-
cess involves planning production activities and managing inventory to meet company
needs, includes managing material requirements, processing materials as per demands,
and receiving materials in the warehouse; 3) production: the core activity of manufac-
turing, where raw materials are processed to create finished products. This process also
includes quality control.

3.1.2. Feature identification. We analyze three different manufacturing company require-
ments based on current activities and supporting systems. The manufacturers involved
in this research are referred to KI, OI, and KF. Each represents a different type of pro-
duction: KI manufactures custom metal molds, OI manufactures consumer electronics,
and KF produces food. We explore the needs of the three companies and then extract
the needs of each feature.
To demonstrate the proposed method, we focus on three manufacturers with different

demand management requirements. KI specializes in making molds based on customer
orders. Their planning and production happen when they receive an order, and they do
not keep finished goods in inventory, only raw materials. Quality inspection occurs once
the finished product is ready. KI uses a single structured bill of materials and does not
reuse materials. Rejected products are reworked into finished goods or disposed of as
scrap.
OI processes plastic materials into electronics sub-parts and assembles them with other

parts to make finished products. They have a continuous production process to meet mar-
ket demand, with a production plan that considers finished goods inventory and received
orders. Quality inspection is conducted in each sub-process before sending the product
to the next stage. OI uses a multilevel bill of materials and can reprocess rejected plastic
products as additional raw materials.



ICIC EXPRESS LETTERS, VOL.18, NO.5, 2024 525

KF is a food manufacturer that produces foods from raw materials. Their production
plan is based on orders and stock estimation to prevent overstocking finished goods. KF
uses a multilevel bill of materials to separate food production, packaging, and packaging
processes. Quality inspection is performed in each sub-process to avoid sending rejected
food to the packing stage. Rejected products cannot be reworked or used as additives;
they are scrapped and destroyed in KF.

Table 1. Feature identification

Root feature requirement Feature Variant
Material Management BOM Structure Simple

Hierarchical
Material Usage Pure Material

Reuse Material
Planning and Control Demand Management Make-to-Order

Make-to-Stock
Inventory Stock-based

Planned
Production Production Process Single Process

Complex Process
Quality Inspection Each-process

End-of-process
Rejection Scrap

Rework

3.1.3. Feature and software product matrix. Table 1 shows the complete features of an
internal supply chain. We map the features onto software products based on the manu-
facturer’s requirements. The matrix maps root features and features onto the software
product. We use a check mark (X) to show the feature that should be available in a
software product. Table 2 maps the presented feature of every software product.

Table 2. Matrix of features and software products

Feature Variant Company KI Company OI Company KF
BOM Structure Simple X − −

Hierarchical − X X
Material Usage Pure X X X

Reuse Material − X −
Demand Management Make-to-Order X X X

Make-to-Stock − X X
Inventory Stock-based X X X

Planned − X X
Production Process Single Process X X X

Complex Process − X X
Quality Inspection Each-Process − X X

End-Process X X X
Rejection Scrap X − X

Rework − X −



526 O. KOMARUDIN, E. K. BUDIARDJO AND A. AZURAT

3.1.4. Feature modeling. We implement the feature model based on the identified software
product and features. This process consists of two activities: identifying the commonal-
ities and variability of software products, and creating a feature model using a feature
diagram.
Once we identify the features and map them to the software product, we can determine

their commonality and variability. Features found in all categories are considered com-
mon and are mandatory for all software products. Some features are specific to certain
categories and are called varying features. These varying features are optional and can
be chosen or omitted. Additionally, some features may rely on other features to work
properly.
The features used in all software products are Make-to-Order in the Demand Manage-

ment feature, Pure in the Material Usage feature, Stock-Based in the Inventory feature,
and End-Process Quality Inspection. A feature that exists but is not used by some software
product is not mandatory.
Based on the description, we can model the features using a feature diagram as seen

in Figure 2. The feature diagram models the commonality and variability of the software
product line for manufacturers. It contains mandatory and optional features that can be
found in a product. It also describes the constraints and the requirements of a feature in
the software product line.

Figure 2. Feature model of SPL for manufacture internal supply chain

Figure 2 depicts the feature model of a manufacturing internal supply chain. The feature
diagram clearly illustrates the model of the software product line. This model shows the
abstract and concrete features needed in the software product for manufacturers. The
commonality and variability shown in the diagram and dependencies are indicated by the
required relationship.

3.2. Domain architecture. Product line architecture is produced in the domain design
stage [15]. The variability modeling that is defined by the domain requirements engineer-
ing can be used as an input to determine the reference architecture. In this study, we use
a UML-DOP profile to model variations in the UML notation [31]. We propose several
levels of abstraction at the architectural model.

3.2.1. Component diagram. First, we use a component diagram to capture the variations
at the feature level. In the UML-DOP, a feature is modeled as a UML component with
stereotype <<feature>>, so we transform the feature diagram into a UML component



ICIC EXPRESS LETTERS, VOL.18, NO.5, 2024 527

Figure 3. Component diagram: Feature model for internal supply chain
of SME size manufacture

diagram. Figure 3 depicts the feature model on a UML-DOP profile. The stereotype
mandatory also represents the mandatory feature of the feature model. The stereotype
requires represents the dependency between features.

Starting from this point, we will focus on the demand management feature to demon-
strate how these methods work. Demand management has one mandatory feature and one
optional feature. In addition, the demand management feature interacts with other fea-
tures in inventory and checks orders. It can represent the process of design and realization
for other features.

The Make-to-Order strategy adds the customer orders into the material planning, while
the Make-to-Stock strategy combines the order and inventory to create material planning.
Demand management processes the requirements from sales orders, so it is connected
to the Sales and Distribution component. Furthermore, DemandManagement is also
connected to the Warehouse feature.

Figure 4(A) shows part of a UML component diagram for a company that uses a Make-
to-Order approach in demand management. The MDemandManagementmodule has an asso-
ciation with the MOrderDetail module. A variation occurs when a company uses a Make-
to-Stock approach (Figure 4(B)). Furthermore, the MDemandManagement module not only
has an association with the MOrderDetail module, but also with the MInventory module.
Figure 4(C) transforms both into an SPL component diagram for DemandManagement.

Figure 4. Component diagram of DemandManagement

3.2.2. Class diagram. In the architectural stage, we analyze the variations and then ex-
tract those two UML class diagrams into the UML class diagram with the UML-DOP
profile. Figure 5 shows the variations of DemandManagement class diagram. We place
the common attributes and operations in the core module and the variants in the delta
module. As defined in the DOP paradigm, the delta module can change the implementa-
tion by adding, removing, or modifying elements.



528 O. KOMARUDIN, E. K. BUDIARDJO AND A. AZURAT

Figure 5. UML class diagram for each DemandManagement strategy

Figure 6. Class diagram for demand management

Figure 6 shows the UML class diagram for DemandManagement. The core module is rep-
resented by the MDemandManagement module. This module contains the DemandManage-

mentImpl class, which implements the DemandManagement interface. The class consists of
common attributes and operations in the DemandManagementmodule, such as calculate-
Planning().
Variants of this class are placed in the delta module. As shown in Figure 6, the package

DMakeToStock represents a delta module. This delta module changes the DemandManage-
mentImpl class by modifying one method and adding a new method. This is denoted by
a class with the stereotype modifiedClass.



ICIC EXPRESS LETTERS, VOL.18, NO.5, 2024 529

4. Evaluation. In domain requirement engineering, we follow several steps, including
business process analysis, feature identification, software product categorization, mapping
features to software products to find similarities and differences, and creating a variability
model. Each step in this process is interconnected and essential.

For domain design, we use the UML-DOP profile to build the SPLE architecture, specif-
ically designed for SME manufacturers. The architecture is based on the feature model
established during domain engineering. We use component diagrams to show the structure
of the variability model and how features are connected. This approach improves mod-
ularity and makes software development and maintenance easier. By using abstraction,
we isolate specific functions within separate components, making them distinct and easy
to interact with. These components can be implemented, developed, replaced, or reused
independently. Transforming mandatory and optional features into separate components
connected through interfaces allows for flexible architectural-level changes.

5. Conclusion and Future Work. This work shows that software development using
SPLE is possible. The study extracts information from three manufacturers with their
internal supply chains. By analyzing their commonality and variability, representative
model features are created. The UML-DOP profile is crucial in the engineering design
process to build the domain architecture.

The domain architecture uses UML component diagrams with stereotypes to present
the feature model in a more abstract form. Class diagrams with a UML-DOP profile make
it easier to describe how features work and connect to each other. Using delta oriented
programming allows changes to the core module of one feature to generate feature variants.

Future work could involve implementing application engineering for the same domain,
and testing the created code could be another avenue of research.

Acknowledgment. This work is fully supported by research of Reliable Software Engi-
neering Lab of Universitas Indonesia. The authors also gratefully acknowledge the helpful
comments and suggestions of the reviewers, which have improved the presentation.

REFERENCES

[1] R. Y. Zhong, X. Xu, E. Klotz and S. T. Newman, Intelligent manufacturing in the context of Industry
4.0: A review, Engineering, vol.3, no.5, pp.616-630, DOI: 10.1016/J.ENG.2017.05.015, 2017.

[2] H. Fatorachian and H. Kazemi, Impact of Industry 4.0 on supply chain performance, Production
Planning and Control, vol.32, no.1, pp.63-81, DOI: 10.1080/09537287.2020.1712487, 2021.

[3] E. A. Maria, K. A. Maria and M. A. Alia, Smart agents in the business information system, ICIC
Express Letters, vol.13, no.10, pp.921-929, DOI: 10.24507/icicel.13.10.921, 2019.

[4] K. Li and J. Gao, A framework to integrate manufacturing information systems, Engineering, nos.11-
12, pp.22-23, DOI: 10.1007/978-0-387-49864-5, 2014.

[5] V. K. Agrawal, V. K. Agrawal and A. R. Taylor, Trends in commercial-off-the-shelf vs. proprietary
applications, Journal of International Technology & Information Management, vol.25, no.4, pp.1-35,
2016.

[6] O. Alaskari, R. Pinedo-Cuenca and M. M. Ahmad, Framework for implementation of enterprise
resource planning (ERP) systems in small and medium enterprises (SMEs): A case study, Procedia
Manufacturing, vol.55, no.C, pp.424-430, DOI: 10.1016/j.promfg.2021.10.058, 2021.

[7] T. Oliveira, M. Thomas and M. Espadanal, Assessing the determinants of cloud computing adoption:
An analysis of the manufacturing and services sectors, Information and Management, vol.51, no.5,
pp.497-510, DOI: 10.1016/j.im.2014.03.006, 2014.

[8] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon and A. Egyed, The ECCO tool: Extraction and
composition for clone-and-own, 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol.2, pp.665-668, DOI: 10.1109/ICSE.2015.218, 2015.

[9] A. Ivanov and T. Jaff, Manufacturing lead time reduction and its effect on internal supply chain,
International Conference on Sustainable Design and Manufacturing, vol.52, DOI: 10.1007/978-3-
319-32098-4, 2017.



530 O. KOMARUDIN, E. K. BUDIARDJO AND A. AZURAT

[10] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker and K. Czarnecki, An exploratory
study of cloning in industrial software product lines, Proc. of the European Conference on Software
Maintenance and Reengineering (CSMR), pp.25-34, DOI: 10.1109/CSMR.2013.13, 2013.

[11] H. Paul, Business Process Change, Third Edition: A Business Process Management Guide for Man-
agers and Process Professionals, Morgan Kaufmann Publishers Inc., 2014.

[12] F. Stallinger, R. Neumann, R. Schossleitner and S. Kriener, Migrating towards evolving software
product lines: Challenges of an SME in a core customer-driven industrial systems engineering con-
text, Proc. of International Conference on Software Engineering, pp.20-24, DOI: 10.1145/1985484.
1985490, 2011.

[13] L. Northrop and P. Clements, A Framework for Software Product Line Practice, Version 5.0, Soft-
ware Engineering Institute, 2012.

[14] P. C. Clements, Product line engineering comes to the industrial mainstream, INCOSE Int. Symp.,
vol.25, no.1, pp.1305-1319, DOI: 10.1002/j.2334-5837.2015.00131.x, 2015.

[15] K. Pohl, G. Böckle and F. Van Der Linden, Software Product Line Engineering: Foundations, Prin-
ciples, and Techniques, Springer Berlin Heidelberg, 2005.

[16] S. Apel, D. Batory, C. Kästner and G. Saake, Feature-Oriented Software Product Lines, Springer,
2013.

[17] C. Basnet, The measurement of internal supply chain integration, Management Research Review,
vol.36, no.2, pp.153-172, DOI: 10.1108/01409171311292252, 2013.

[18] D. Postmus, The Supply Chain of Enterprise Software: Strategy, Structure, and Coordination, Ph.D.
Thesis, University of Groningen, Groningen, 2009.

[19] D. Amalfitano, V. De Simone, A. R. Fasolino, M. Lubrano and S. Scala, Introducing software
product lines in model-based design processes: An industrial experience, Proc. of 2016 13th Working
IEEE/IFIP Conference on Software Architecture (WICSA 2016), pp.287-290, DOI: 10.1109/WICSA.
2016.36, 2016.

[20] A. Metzger and K. Pohl, Software product line engineering and variability management: Achieve-
ments and challenges, Futur. Softw. Eng., pp.70-84, DOI: 10.1145/2593882.2593888, 2014.

[21] C. W. Krueger, Easing the transition to software mass customization, The 4th International Work-
shop on Product Family Engineering (PFE-4), vol.2290, no.512, pp.282-293, DOI: 10.1007/3-540-
47833-7 25, 2002.

[22] N. M. S. Iswari, E. K. Budiardjo and Z. A. Hasibuan, E-business applications recommendation for
SMES using advanced user-based collaboration filtering, ICIC Express Letters, vol.15, no.5, pp.517-
526, DOI: 10.24507/icicel.15.05.517, 2021.

[23] M. Nakano and K. Matsuyama, Internal supply chain structure design: A multiple case study of
Japanese manufacturers, International Journal of Logistics Research and Applications, vol.24, no.1,
pp.79-101, DOI: 10.1080/13675567.2020.1726305, 2021.

[24] O. Komarudin, D. Adianto and A. Azurat, Modeling requirements of multiple single products to
feature model, Procedia Comput. Sci., vol.161, pp.107-114, DOI: 10.1016/j.procs.2019.11.105, 2019.

[25] Wahyudianto, E. K. Budiardjo and E. M. Zamzami, Feature modeling and variability modeling
syntactic notation comparison and mapping, Journal of Computer and Communications, vol.2, no.2,
pp.101-108, DOI: 10.4236/jcc.2014.22018, 2014.

[26] B. Unhelkar, Software Engineering with UML, Taylor & Francis Group, 2018.
[27] J. Martinez, T. Ziadi, J. Klein and Y. Le Traon, Identifying and visualising commonality and vari-

ability in model variants, in Modelling Foundations and Applications. ECMFA 2014. Lecture Notes
in Computer Science, J. Cabot and J. Rubin (eds.), Cham, Springer, DOI: 10.1007/978-3-319-09195-
2 8, 2014.

[28] V. Rajlich, Software evolution and maintenance, Future of Software Engineering (FOSE’14), pp.133-
144, DOI: 10.1145/2593882.2593893, 2014.

[29] G. Coutinho, S. Ferreira, F. Nunes, E. Figueiredo and M. D. Almeida, On the use of feature-oriented
programming for evolving software product lines – A comparative study, Science of Computer Pro-
gramming, vol.93, pp.65-85, DOI: 10.1016/j.scico.2013.10.010, 2014.

[30] I. Schaefer, L. Bettini, V. Bono, F. Damiani and N. Tanzarella, Delta-oriented programming of
software product lines, in Software Product Lines: Going Beyond. SPLC 2010. Lecture Notes in
Computer Science, J. Bosch and J. Lee (eds.), Berlin, Heidelberg, Springer, DOI: 10.1007/978-3-
642-15579-6 6, 2010.

[31] M. R. A. Setyautami, R. Hähnle, R. Muschevici and A. Azurat, A UML profile for delta-oriented
programming to support software product line engineering, Proc. of the 20th Int. Syst. Softw. Prod.
Line Conf., pp.45-49, DOI: 10.1145/2934466.2934479, 2016.


