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Abstract. Skin cancer, particularly melanoma, is a life-threatening condition that re-
quires early detection and prompt treatment to reduce mortality rates. Dermoscopic im-
ages offer a non-invasive and cost-effective method for examining pigmented skin lesions.
However, accurate analysis is challenging due to the lack of standardized colours, im-
age capture settings, and artefacts. Deep learning models, such as Convolutional Neural
Networks (CNNs), have shown promising Computer-Aided Diagnosis (CAD) results by
automatically extracting features from medical images. Nonetheless, the performance of
these models heavily relies on the quality and balance of the training dataset. This study
addresses the imbalance issue within the ISIC-2019 dataset, which contains dermoscop-
ic images of pigmented skin lesions. Three pre-trained CNNs (Inception-v3, Xception,
and DenseNet-201) were chosen to implement the augmentation scenario. The dataset
underwent several preprocessing steps, including duplicate detection, data cleaning, and
resizing. Additionally, data augmentation techniques were applied to balancing the dis-
tribution of images across different classes. Experimental results demonstrated the ef-
fectiveness of the proposed method in improving the classification performance of the
pre-trained CNNs. These findings underscore the significance of dataset preparation and
augmentation techniques in overcoming challenges posed by imbalanced datasets. The
results validate the effectiveness of data preprocessing and augmentation techniques in
achieving higher classification accuracy.
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1. Introduction. Pigmented skin lesions, characterized by abnormal pigmentation com-
pared to the surrounding normal skin, encompass a range of conditions. Among these,
melanoma stands out as the most lethal variant of skin cancer affecting pigmented skin
lesions [1]. While constituting only around 1% of skin cancer cases, melanoma is respon-
sible for a disproportionate number of fatalities within the realm of skin cancer. The peril
of melanoma arises from its potential to metastasize to distant organs if not promptly
diagnosed and treated. Early intervention in melanoma cases is pivotal in mitigating mor-
tality rates. Fortunately, advancements in treatment modalities have led to a notable
reduction in melanoma-related deaths over the last decade (2011 to 2020). Rates of de-
cline have been approximately 5% per year for adults under 50 and about 3% annually
for individuals aged 50 and above [2].

However, despite these encouraging trends, challenges persist. Over recent decades, the
incidence of melanoma has exhibited significant fluctuations across various age groups.
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Notably, a continuous annual rise of approximately 1% has been observed in women
aged 50 and above from 2015 to 2019, while rates for men in the same age bracket
have stabilized. This divergence underscores the intricate nature of melanoma’s dynamics
within different demographic segments.
The motivation behind this study stems from the need to address a critical imped-

iment in the domain of pigmented skin lesion classification – the issue of imbalanced
datasets. Dermatologists rely extensively on dermoscopic images, offering a non-invasive,
cost-effective means to assess skin tissue [3]. However, the efficacy of automated image
analysis techniques, particularly those employing Convolutional Neural Networks (CNNs),
is hampered by the lack of standardized colors, methodologies, and image capture settings,
leading to variations in outcomes. Moreover, the presence of numerous artifacts such as
blood vessels, skin hair, dark spots, and even extraneous marks further complicates the
accurate identification and categorization of lesions. These challenges are amplified by
the absence of direct physician examination, making it difficult for researchers to explore
diverse techniques that could yield optimal detection outcomes.
Deep learning, particularly the use of CNNs, has experienced remarkable progress in

Computer-Aided Diagnostic (CAD) systems. CNNs excel in extracting salient features
from medical images, such as radiographs and CT scans, facilitating the detection of ab-
normalities and signs of diseases with remarkable accuracy, sometimes surpassing human
diagnostic capabilities [4,5]. This advancement has considerably enhanced the precision
and efficiency of medical diagnoses, presenting an invaluable tool for medical practitioners
to bolster clinical decision-making.
The efficacy of employing CNNs for classifying pigmented skin lesions, however, hinges

on the availability of a comprehensive dataset. The occurrences of various diseases within
the realm of pigmented skin lesions are unevenly distributed, leading to dataset imbal-
ances that pose a significant challenge for deep learning-based classification [6]. Many
augmentation techniques are currently being developed, including resampling techniques
[7], algorithmic techniques [8], and data level techniques [9]. The choice of technique de-
pends on the specifics of the data set and the problem. In this research, the resampling
technique is used due to the simplicity of the process. The resampling technique in this
research targets the amount of data in the largest class, so that data in small classes is
oversampled.
In this context, this research endeavor contributes significantly to the field of derma-

tology and skin cancer diagnosis. It outlines a robust methodology aimed at addressing
the complexities of imbalanced datasets and enhancing the performance of pre-trained
CNNs in accurately classifying pigmented skin lesions. The subsequent sections of this
paper elaborate on the materials and methods employed (Section 2), present the outcomes
of applying the proposed model to five pre-trained CNNs (Section 3), and conclude by
summarizing the critical insights and implications of this research.

2. Materials and Methods. This section will explain the dataset, pre-trained CNN,
augmentation scenario, and experimental setup used in this research and its evaluation.

2.1. Pre-trained CNN models. A pre-trained CNN model is a CNN model trained
on a large dataset before being used. It learns to extract features from images and can
recognize various visual patterns. Pre-trained models save time and resources compared
to training from scratch. They achieve high accuracy by leveraging large-scale datasets
like ImageNet. Researchers and developers can use pre-trained models for tasks like im-
age classification, object detection, and feature extraction. Fine-tuning allows adapting
the model to new datasets. Overall, pre-trained CNN models are valuable resources for
efficiently solving image-related problems. In this study, all pre-trained CNN models have
been trained using ImageNet.
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We have selected three frequently utilized pre-trained CNNs. The selection of the spe-
cific model is not critical in this case, as we aim to assess the effects of augmentation
rather than striving for peak performance. Considering resource limitations, we opted for
models with hyper-parameter counts ranging from 20 to 25 million. The selected models,
including Inception-v3, Xception, and DenseNet-201, are presented in Table 1.

Table 1. A description of the employed architecture

Model Architect Depth Parameters Input size

Inception-v3 Szegedy et al. [10] 189 23.9 M 299 × 299
DenseNet-201 Huang et al. [11] 402 20.2 M 299 × 299

Xception Chollet [12] 81 22.9 M 299 × 299

Inception-v3 is a powerful model with multiple pathways for capturing features at
different scales. Deep architecture and efficient design allow for effective learning of hi-
erarchical representations. Inception-v3’s design revolves around the inception module,
which combines convolutional layers of different sizes to recognize patterns and objects.
The deep architecture of stacked inception modules enables the model to capture low-level
and high-level features. Overall, Inception-v3 excels in image-related tasks and is widely
used in computer vision applications.

DenseNet-201 possesses dense connection, a deep architecture, feature concatenation,
effective parameter use, pre-training on massive datasets, and adaptability. DenseNet-201
effectively uses parameters, resulting in a compact model with enhanced performance.
Pre-training on massive datasets improves precision and permits transfer learning. It
is flexible and adaptable to some computer vision jobs. Overall, DenseNet-201 provides
excellent network performance and efficient information flow.

Essential characteristics of the Xception model include depthwise separable convolu-
tions for efficient feature capture, extreme depth for hierarchical representations, lin-
ear bottleneck structure for parameter reduction, pre-training on large-scale datasets for
generalization, versatility for various computer vision tasks, and high accuracy in image-
related tasks. Xception is a practical framework for image recognition and computer vision
applications.

2.2. ISIC dataset. The International Skin Imaging Collaboration (ISIC) is a multina-
tional organization aiming to improve the early detection and diagnosis of melanoma and
other skin cancers using digital imaging and Artificial Intelligence (AI) technology. It was
formed in 2016 and has since become an industry leader in dermatology and skin imaging.
Since 2016, ISIC has made available the dermoscopic dataset, updated annually for their
challenges. Table 2 and Table 3 detail the datasets that ISIC has made available.

In terms of quantity, there is an increase in data every year, but the number of disease
classes varies. The ISIC-2020 dataset has many data and disease classes, but the number

Table 2. The number of images contained in the ISIC 2016-2020 databases

Databases Training Testing Class

ISIC-2016 900 379 2
ISIC-2017 2,000 600 3
ISIC-2018 10,015 1,512 7
ISIC-2019 25,331 8,238 8
ISIC-2020 33,126 10,982 2
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Table 3. ISIC 2016-2020 class distribution training data datasets

Class disease 2016 2017 2018 2019 2020

melanoma 173 374 1,113 4,522 584
melanocytic nevus 0 0 6,705 12,875 0
basal cell carcinoma 0 0 514 3,323 0
actinic keratosis 0 0 327 867 0
benign keratosis 0 0 1,099 2,624 0
dermatofibroma 0 0 115 239 0
vascular lesion 0 0 142 253 0

sqs cell carcinoma 0 0 0 628 0
benign 727 1,372 0 0 0

seborrheic keratosis 0 254 0 0 135
atypical melanocytic 0 0 0 0 1
cafe-au-lait macule 0 0 0 0 1

lentigo nos 0 0 0 0 44
lichenoid keratosis 0 0 0 0 37

nevus 0 0 0 0 5,193
solar lentigo 0 0 0 0 7

other/unknown 0 0 0 0 27,124

Total 900 2,000 10,015 25,331 33,126

of unknown images accounts for over 80% of the total data, although they can be catego-
rized as benign. The ISIC-2020 dataset is more commonly used for binary classification
between malignant melanoma and benign cases. Despite being imbalanced, the ISIC-2019
dataset has the largest number of classes and sufficient data for each class. Considering
the distribution of the above datasets, this study uses the ISIC-2019 dataset.
The ISIC-2019 dataset is freely available to the public for non-commercial use under

the CC-BY-NC license. The dataset includes two CSV files: one containing metadata,
which provides general information about patients and their lesions, such as age, gender,
and anatomical location, and the other containing the confirmed diagnosis of each lesion,
serving as the ground truth for analysis.

2.3. Dataset preprocessing and augmentation scenario. In this section, we detail
our dataset preprocessing and augmentation strategy, geared towards cultivating a ro-
bust dataset that optimally supports our model’s effectiveness and understanding of skin
lesions. This multi-step pipeline is designed to fortify our model.

1) Duplicate Detection for Uniqueness: We initiate with a stringent duplicate detection
process to maintain dataset integrity. Scrutinizing and comparing each image, we elim-
inate duplicates, ensuring distinct data for training and testing, bolstering evaluation
accuracy.

2) Data Cleaning for Metadata Consistency: Ensuring precision, we meticulously inspect
image metadata. Images lacking lesion IDs are removed, ensuring alignment with our
focus. This diligence guarantees faithful representation of skin lesion categories.

3) Resizing for Model Compatibility: Adapting images to pre-trained CNN model requi-
sites, we standardize dimensions. This promotes efficient feature extraction and con-
vergence, pivotal for accurate classification.

4) Augmentation Strategy: Our augmentation framework, integral to our approach, di-
versifies training data. Leveraging an Image Data Generator, diverse transformations
enable effective model generalization across scenarios. Transformations include up to
180-degree rotation, 0.1 shifting in height and width, 0.1 zooming, horizontal/vertical
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flipping, brightness adjustment (0.9 to 1.1 range), and “nearest” fill mode. Real-world
variations are introduced, aiding adaptability.

5) Balanced Class Exposure and Evaluation: Employing a batch size of 20, we manage
augmented images efficiently, targeting a final count of 9200, matching the largest
class (NV). Reserving 800 images (100 per class) for testing, our splitting strategy and
augmentation address class distribution bias, ensuring equitable learning. Summary
results are presented in Table 4.

Table 4. Data splitting and augmentation scenarios

Class
Initial
data

No ID
lesion

Testing
dataset

Training
dataset

Augmented
training dataset

NV 12,875 3,647 100 9,128 9,128
MEL 4,522 495 100 3,927 9,204
BCC 3,323 138 100 3,085 9,220
BKL 2,624 436 100 2,088 9,202
AK 867 36 100 731 9,060
SCC 628 24 100 504 8,606
DF 239 11 100 128 8,436

VASC 253 39 100 114 7,918

Total 25,331 4,826 800 19,705 70,774

Note that NV: melanocytic nevus, MEL: melanoma, BCC: basal cell carcinoma, BKL:
benign keratosis, AK: actinic keratosis, SCC: squamous cell carcinoma, DF: dermatofi-
broma, VASC: vascular lesion.

To gauge augmentation’s impact, we plan comprehensive experiments, contrasting mod-
el performance with and without augmentation. Quantifying enhancements in accuracy,
convergence, and generalization, this assessment validates our approach’s efficacy.

2.4. Experiment setup. This research investigated various pre-trained CNN architec-
tures for classifying pigmented skin lesions, as outlined in Table 1. All models were con-
figured with the same set of default hyperparameters by Keras. ADAM optimization
technique was used with a learning rate of 0.01, a dropout rate of 0.25, 50 epochs, and a
batch size of 20.

The experimental procedure follows the diagram in Figure 1. A dataset comprising
25,331 images of pigmented skin lesions across eight disease classes is utilized as input. A
preprocessing stage is applied to the data before feeding the images into the pre-trained
CNN. This stage includes duplicate removal and resizing of the images. Since the images
in the ISIC-2019 dataset have varying sizes, they are resized to match the input size of
the model. Data augmentation techniques are also employed to increase the number of
input samples during the training process.

This step also balances the number of images in each class. Finally, the data is split
into training and testing sets. Out of the original 800 data points, 800 are set aside for
testing purposes, while the remaining data is used for training with 5-fold cross-validation.
Following the preprocessing stage, the training phase commences using ImageNet transfer
learning for each CNN architecture. Once satisfactory learning results are achieved, test-
ing is performed using the previously separated 800 data points. Using ImageNet transfer
learning accelerates the training process and improves the performance of the models.

The training procedure took place using JupiterHub, a platform that facilitates the
design and implementation of CNN architectures. The framework used for training was
deployed on the JupiterHub platform. Due to the computationally demanding nature
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Figure 1. Schematic of the experiment

of CNN training, all experiments were performed on workstations equipped with the
following specifications: an Intel (R) Core i9-10900K 3.7 GHz processor, 128 GB of RAM,
an NVIDIA RTX 3080 11 GB GPU, and the Linux Ubuntu 18.04 operating system.

2.5. Evaluation. The quality of a learning algorithm is determined by analyzing its
performance on test data. The evaluation matrix design starts with the confusion matrix,
as presented in Figure 2. Commonly used performance evaluation metrics for classification
include sensitivity (SEN), specificity (SPE), accuracy (ACC), precision (PREC), and the
Area under the Receiver Operating Characteristic (ROC) curve (AUC) [13].

Figure 2. Confusion matrix with actual vs prediction
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3. Result and Discussion. This section presents and discusses the outcomes of ap-
plying the experimental scheme to chosen pre-trained CNNs using both the original and
augmented datasets. Additionally, a comparison is made with other existing research find-
ings. The limitations and potential directions for future research are addressed towards
the end.

3.1. Result in training and testing models. After training a selected CNN model
with the ImageNet dataset to establish initial weights, the model is further trained using
the ISIC-2019 dataset. The training process involves utilizing both the original dataset
and the augmented dataset. The training accuracy and validation accuracy results of the
Inception-v3, DenseNet-201, and Xception models with both the original and augmented
datasets are presented in Figure 3. To avoid bias in the splitting of training and validation
data, the model is trained using 5-fold cross-validation. The training process consists of
50 epochs.

Figure 3. Training and validation accuracy of pre-trained CNN with and
without augmentation. The X-axis is the number of epochs, and the Y -axis
is the accuracy value.

A model’s ability to accurately identify new objects is greatly influenced by its ability
to fit well. CNN models are considered a good fit when the validation accuracy closely
follows the training accuracy. Figure 3 shows that all models fit well with the original and
augmented datasets. However, it is noticeable that the models trained with augmented
data have validation accuracy results that are more similar to the training results than
those trained with the original dataset. This outcome demonstrates the positive impact of
augmentation on the models. Furthermore, based on statistical evaluation of the results
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of the callback function in Tensorflow, the model reaches its optimal and stable state
starting from the 20th epoch. The state is confirmed in the graph shown in Figure 3.
In Figure 4, we are presented with a confusion matrix that compares the performance

of a pre-trained Convolutional Neural Network (CNN) with and without augmentation.
The confusion matrix provides insights into the classification results by displaying the
predicted labels against the actual labels for each class. The confusion matrix is divid-
ed into “Without Augmentation” and “With Augmentation”. Each section represents
the performance of the CNN model under different conditions. The rows in the matrix
represent the actual labels, while the columns represent the predicted labels.

Figure 4. Confusion matrix testing of pre-trained CNN with and without
augmentation

Analyzing the confusion matrix of the model without augmentation reveals that the
Melanocytic Nevus (NV) class achieves 100% accuracy across all three models. This con-
dition can be attributed to the dominance of the NV class within the original dataset,
accounting for 12,875 images or 50.8% of the overall data. As a result, the NV class is
perfectly detected by all three models. However, this imbalance adversely affects other
classes, especially those with limited images. On the other hand, the confusion matrix of
the model with augmentation demonstrates accuracy distributed across all classes. This
condition indicates an improvement in model performance through augmentation, which
helps balance the representation of images between classes.
By comparing the results of the two sections, we can assess the impact of augmentation

on the model’s performance. The “With Augmentation” section generally shows better
results regarding increased true positives and reduced misclassifications. However, it is
essential to note that the specific augmentation techniques used are not provided in the
given information. Augmentation may entail picture modifications such as rotation, scal-
ing, inversion, or the addition of noise. The success of augmentation is dependent on the
particular dataset and the approaches chosen.
Figure 4 depicts, in conclusion, the effect of augmentation on the performance of a pre-

trained CNN. The results indicate that augmentation enhances the model’s capacity to
categorize the various skin lesion types, as seen by a rise in true positives and a decrease
in false positives. Table 5 shows the total performance of the examination.
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Table 5. Performance of pre-trained CNN with and without augmentation

Model SEN (%) SPE (%) PRE (%) ACC (%) F1 (%) AUC

Without augmentation
Inception-v3 55.50 90.40 65.06 55.50 54.10 0.50
DenseNet-201 52.75 89.41 64.06 52.75 49.29 0.50

Xception 55.13 64.97 64.71 55.13 52.22 0.50
With augmentation
Inception-v3 88.63 98.23 88.53 88.63 88.53 0.94
DenseNet-201 84.00 97.40 84.60 84.00 83.86 0.90

Xception 81.75 96.98 81.78 81.75 81.69 0.89

Table 5 compares the performance of CNN models pre-trained with and without data
augmentation. The outcomes indicate the value of augmentation strategies for enhancing
the performance of models. Without augmentation, the models’ values for various pa-
rameters, including sensitivity, specificity, precision, accuracy, F1 score, and AUC, were
considerably lower. However, when augmentation was done, all models demonstrated sig-
nificant performance enhancements. The enhanced models exhibited considerably greater
sensitivity, specificity, precision, accuracy, F1 score, and Area under the Curve (AUC)
than their non-augmented counterparts. This accomplishment demonstrates that aug-
mentation approaches improved the models’ capacity to generalize and generate more
accurate predictions on unobserved data.

These findings highlight the importance of data augmentation as a valuable tool in
training CNN models. Augmentation helps to diversify the training data by introducing
variations, leading to better model performance and increased robustness. In practical
applications of CNN models, where accuracy and performance are crucial, employing
data augmentation techniques can be a beneficial strategy to enhance the model’s overall
performance and achieve more reliable results.

3.2. Comparison with existing research. This section will compare the results of this
study with those of previous studies. The comparison is restricted to classification studies
utilizing the ISIC-2019 eight-class dataset with an augmentation process, as Table 6 shows.
In terms of sensitivity, specificity, precision, accuracy, and F1 score, the models in the
current study consistently beat the other methods/models when comparing performance
measures. The Inception-v3 model earned the most excellent Area under the Curve (AUC)
score of 0.94.

Table 6. Comparison of performance with existing research

Author Method/model
Performance metrix

SEN
(%)

SPE
(%)

PRE
(%)

ACC
(%)

F1 score
(%)

AUC

Molina-Molina et al. [14] DenseNet-201 66.45 97.85 91.61 97.35 n/a n/a
Kassem et al. [15] GoogleNet 79.80 97.00 80.36 94.92 80.07 n/a
Liu et al. [16] Clinical-Inspired 53.80 97.40 n/a 64.00 n/a 0.91

Cauvery et al. [17] Ensemble CNN 62.00 98.00 73.00 81.00 56.00 n/a
Ours Inception-v3 88.63 98.23 88.53 88.63 88.53 0.94
Ours DenseNet-201 84.00 97.40 84.60 84.00 83.86 0.90
Ours Xception 81.75 96.98 81.78 81.75 81.69 0.89
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Molina-Molina et al. [14] address the issue of imbalanced classes by employing three
classifiers with a linear plurality vote. Although this approach yields high accuracy and
precision, it falls short in improving sensitivity, a crucial parameter in the medical field
that cannot be overlooked. Furthermore, this method necessitates extensive computation-
al effort. While Liu et al. [16]’s augmentation process lacks specific explanations regarding
the methods and procedures employed, the obtained performance results were also un-
satisfactory. Cauvery et al. [17] tackle the problem of imbalanced classes by utilizing an
online-augmentation policy. Although this method offers the advantage of not directly
increasing the number of training images, it presents numerous disadvantages, includ-
ing dependency on online connection, higher computational costs, reliance on input data
quality, and the risk of overfitting. Like Kassem et al. [15]’s research, our study incorpo-
rates augmentation concepts where the number of images in each class is augmented to
approach the number of images in the largest class. However, our research demonstrates
several advantages, particularly regarding data cleaning and splitting processes. Notably,
the testing data is guaranteed to remain separate from the augmented training data. In
Table 6, our model outperforms Kassem et al.’s model.
These results highlight the effectiveness of the models presented in the current study.

The utilization of data augmentation techniques further bolstered the models’ perfor-
mance. The findings suggest that these models have the potential to serve as valuable
tools for accurate classification and discrimination of the relevant data.
Overall, the research conducted in the current study contributes significantly to the field

by presenting robust models that outperform existing approaches. The models’ demon-
strated superiority in performance metrics underscores their potential impact and useful-
ness in practical applications within the given domain.

4. Conclusions. In summary, this study has demonstrated the efficacy of training CNN
models using the ImageNet dataset and subsequently fine-tuning them with the ISIC-2019
dataset. Augmentation played a pivotal role in achieving models that exhibited improved
validation accuracy, aligning more closely with training accuracy. The application of aug-
mentation not only boosted model performance but also contributed to a more balanced
representation of images across different classes, as evident from the confusion matrix
analysis. The conclusive evidence of augmentation’s positive impact highlights its signif-
icance in optimizing CNN model performance for real-world applications.
The findings from this study underscore the importance of data augmentation in bol-

stering CNN model capabilities and attaining dependable outcomes in practical scenarios.
By presenting robust models that surpass existing approaches, this research makes a valu-
able contribution to the field. The superior performance metrics achieved by these models
underscore their potential utility and effectiveness within the designated domain.
This study identifies limitations and future research directions. The approach of using

a single augmented image quantity might overlook optimal levels, while hyperparame-
ter tuning could enhance model performance. Basic preprocessing techniques could be
extended for better input quality. Incorporating specialized layers like attention mech-
anisms and exploring multi-modal approaches offer potential performance gains, albeit
with increased training time. Addressing these aspects can advance the field and lead to
more effective CNN models.
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