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Abstract. To reduce the labor required for physicians to make diagnosis from time
series data on kidney function from specific health checkups, this paper proposes 1) coop-
erative learning in which a sequence of creating a flowchart (FC) and training machine
learning (ML) models is iteratively repeated and 2) a decision assistance system present-
ing suggestion based on the created FC and ML models. The cooperative learning aims to
reduce the labor for creating FC and preparing supervised data. The decision assistance
system aims to achieve both evidence-based judgments and accuracy. The effectiveness of
the proposed framework is demonstrated in an example implementation using real data.
Keywords: Kidney function, Time series data, Trend, Machine learning, Flowchart

1. Introduction. The number of chronic dialysis patients in Japan exceeds 340,000,
and the number is increasing year by year [1]. One of the social issues is to reduce the
number of dialysis patients due to chronic kidney disease (CKD) since this will lead to
an increase in healthy life expectancy and a reduction in medical costs. Early detection
of deteriorating kidney function (KF) and early initiation of treatment are important to
prevent chronic kidney disease. Therefore, a major challenge is how to identify patients
at high risk of KF deterioration and how to create a system to provide health guidance
and referral to specialists.

Some municipal governments and medical associations hold case review meetings for
specific health checkups and prepare comments for family doctors and examinees in order
to encourage patients who need treatment to be examined by nephrologists. However, the
judgment and preparation of comments are largely manual work by physicians and public
health nurses and require much labor. In order to predict the deterioration of KF, it is
important to grasp the trend of KF from time series data. However, it is not easy to diag-
nose the deterioration of renal function because the values of physical examinations may

DOI: 10.24507/icicel.18.06.615

615



616 Y. YAMAGUCHI, N. SHIGEI, M. MIYAZAKI ET AL.

fluctuate up and down depending on various factors, regardless of the trend. Although
a flowchart-like criterion would help to reduce the burden, it is difficult to establish an
appropriate criterion in the situation above. Furthermore, in such cases, the creation of
the flowchart itself would be a difficult task.
There have been many studies on machine learning (ML) using CKD data. However,

most of these studies, such as in [2, 3, 4], are conducted using data from the UCI machine
learning repository [5]. This dataset is non-time series data consisting of 250 CKD patients
and 150 non-CKD patients and is mainly used for binary classification. The research by
Ventrella et al. in [6] uses time series data to examine the problem of 2- to 4-classification
to predict the time to dialysis. However, it does not explicitly determine trends in KF,
and what it uses is inpatient data and not data from health screening systems. Unlike
previous studies, this study determines the trend of renal function in medical checkup
data.
There are two issues in applying ML. One of the challenges in applying ML is to prepare

sufficient supervised data. 1) Manual annotation of patient data by medical specialists
requires a large amount of time and effort. In addition, ML may not always be based
on medical evidence. 2) The output process of ML and deep learning is a black box. It
cannot be logically explained to physicians and patients. Therefore, this study proposes
the use of flowcharts as a solution to both of these problems.
The purpose of this study is to reduce the amount of labor involved in selecting high-

risk groups and preparing commentary. We propose 1) cooperative learning in which a
sequence of creating a flowchart (FC) and training an ML model is iteratively repeated
and 2) a decision assistance system presenting suggestion based on the created FC and ML
models. The cooperative learning aims to reduce the labor for creating FC and preparing
supervised data. The decision assistance system aims to achieve both evidence-based
judgments and accuracy. These proposals solve the above described two issues in applying
ML. The effectiveness of the proposed cooperative learning is demonstrated by showing
that supervised data can be prepared with less annotation work and that the accuracies of
FC and ML improve. Furthermore, the effectiveness of the proposed judgment method is
demonstrated by showing that ML can provide better results for some cases than FC. The
rest of this paper is organized as follows. Section 2 describes the diagnosis of trends in KF
that this study addresses. Section 3 describes the methods used in this study to determine
trends in KF using ML. Sections 4 and 5 propose a framework for cooperative learning
and a judgment suggestion system, respectively. Section 6 demonstrates the effectiveness
of our proposal. Finally, Section 7 is the conclusion of this paper.

2. CKD Prevention Based on Specific Health Checkups.

2.1. Specific health checkups and specific health guidance. Some municipalities
in Japan provide health guidance based on specific health checkups. The specific health
checkup focuses on metabolic syndrome, which can be taken once a year by people aged
40-74 years to prevent lifestyle-related diseases. In addition, for those who are at high
risk of developing lifestyle-related diseases and for those who are expected to be highly
effective in preventing lifestyle-related diseases by improving their lifestyle, public health
nurses and dietitians provide specific health guidance to review their lifestyle habits.

2.2. CKD prevention efforts based on specific health checkups. CKD is char-
acterized by persistent kidney damage and KF decline that progresses to end-stage re-
nal failure requiring dialysis therapy or kidney transplantation. The number of patients
on chronic dialysis continues to increase, posing a significant healthcare economic prob-
lem. CKD also increases the risk of cardiovascular diseases such as myocardial infarction,
stroke, heart failure, and death [7]. The onset of CKD is closely related to lifestyle dis-
eases and age-related decline in KF, making the family physician the center of care for
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CKD patients. However, CKD includes renal diseases such as IgA nephropathy that re-
quire treatment by nephrologists or specialized medical institutions in the community.
Therefore, family physicians, nephrologists, and specialized medical institutions need to
cooperate in treating CKD patients [7].

One of co-authors, a nephrologist, participates in a case study group using health
checkup data, in which nephrologists and diabetes specialists, the government, and med-
ical associations collaborate [8]. In this study group, health checkup data are used to
identify high-risk groups for CKD and to develop recommendations for health guidance
and referrals to specialists. The health checkup data are time-series data covering 1 to
5 years. The advice consists of the status of KF, urinary protein, blood glucose, blood
pressure, etc., and whether or not a referral to a specialist is required.

Glomerular filtration rate (GFR) is used to diagnose and classify the severity of CKD. It
represents the amount of wastes, such as creatinine and inulin, that the kidneys eliminate
as urine. GFR can be measured by clearance testing, which is not easily performed in an
outpatient setting. Therefore, the estimated glomerular filtration rate (eGFR) calculated
from gender, serum creatinine Cr, and age α is generally used. For Japanese, eGFR
(ml/min/1.73m2) is calculated as follows [9]: For male, eGFR = 194×Cr−1.094 ×α−0.287,
and for female, eGFR = 194× Cr−1.094 × α−0.287 × 0.739.

2.3. Diagnosis of kidney function trends. In preparing the advice described in Sec-
tion 2.2, it is necessary to appropriately capture trends in KF. In our initial study, the
time series data of eGFR for each examinee were classified into the seven classes of trends
as shown in Figure 1. R6 is assigned when the number of checkups is two and KF is
decreasing; R7 is assigned when the number of checkups is one and KF is low.
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Figure 1. Examples of eGFR time-series data for seven classes of trends
in kidney function

In progress of our study, we reviewed the classification classes and considered two cases,
six-class and four-class as follows. In the case of six-class, the data of R7, which are not
time series data, were deleted. In the case of four-class, in addition to that, R2 was merged
into R3 and R6 into R4, resulting in four classes of R1, R3, R4, and R5.

In the health checkup data, the number of checkups and the duration of checkups vary
from examinee to examinee, and there is a problem of missing values. In addition, it is
difficult to make appropriate judgments based only on simple conditions such as slope in
time-series data, where the series length varies and fluctuates.
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3. Estimation of Kidney Function Trends Using Machine Learning. This section
describes the machine learning-based trend estimation method proposed in [10] for the
problem described in Section 2.3. The method is used in this study. This previous study
proposed data preprocessing to deal with different numbers of examinations and different
periods of examinations and three ensemble learning-based methods using the Gradient
Boosting Decision Tree (GBDT) as models for ML. This study uses LightGBM for the
final ML model. The data used to determine the trend of KF are the health checkup data
of eGFR for the maximum examination period of Y years: x1, x2, . . ., and xY . Here,
xy is the value of eGFR of Y − y years ago, and xy = NA if Y − y years ago is not
examined. Let SY = {y|xy ̸= NA} be the set of years of examination. In addition to
the eGFR values x1, x2, . . ., and xY , the explanatory variables are the eGFR’s difference
∆ = xY − xminy∈SY

y, the regression line’s slope a given by Equation (1), the number of

examinations N = |SY|, and the examination period T = Y + 1−miny∈SY
y.

a =
N

∑
y∈SY

yxy −
∑

y∈SY
y
∑

y∈SY
xy

N
∑

y∈SY
y2 −

(∑
y∈SY

y
)2 (1)

If there are years in the examination period T in which no examination is taken, the
explanatory variable xy for those years is linearly interpolated using the values before and
after the examination. That is, for all y > miny′∈SY

y′ such that xy = NA, the value of
the medical examination is given by the following equations. xy = x− + (x+ − x−)(y −
y−)/(y+ − y−), where y− and x− are the year and the value of the medical checkup
immediately before year y ∈ SY and y+ and x+ are the year and the value of the medical
checkup immediately after year y ∈ SY.
GBDT has shown good accuracy in various applications, and LightGBM is a framework

for implementing GBDT. This previous study uses LightGBM as a baseline model for ML.
Decision trees classify data from the root to leaves based on the given features. GBDT is
an ensemble learning method that creates decision tree models sequentially and combines
these models. The created decision tree models improve accuracy by learning the residuals
between the terget values and the sum of the predictions of all models up to the previ-
ous decision tree model as the loss function. LightGBM has a shorter computation time
than other frameworks, because it incorporates gradient-based one-side sampling (GOSS),
which excludes from training data with small contribution to accuracy improvement, and
exclusive feature bundling, which effectively reduces the number of features.

4. Cooperative Learning between Machine Learning and Flowchart Creation.
It is difficult to create a flowchart for a classification task for which clear decision criteria
are unknown. On the other hand, in ML, the preparation of teacher data required for
training models is labor-intensive in the annotation process. We propose a framework
for cooperative learning between ML and flowchart creation as a method to solve both of
these problems.

4.1. General algorithm of the proposed framework. The outline of the proposed
framework is shown in Figure 2. In the proposed framework, Step 1 begins with the
annotation of a tiny amount of data by experts of the target domain. This work may
utilize existing data produced by the experts. In Step 2, the worker observes this data,
extracts the main conditions, and creates a flowchart. In Step 3, annotation work on the
increased data is performed by assigning the judgment results of the flowchart as labels
for the data. In Step 4, an ML model is trained by using the data in Step 3. In Step 5,
experts review only the data for which the judgment result of the ML model differs from
that of the flowchart, correct the labels and modify the flowchart. After that, Steps 3, 4
and 5 are repeated a certain number of times to update the ML model and modify the
flowchart.
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S.2: Create FC

S.3: Apply FC

S.4: Review & revise FC

S.5: Train ML model

S.6: Apply ML model

S.7.1: Review discrepant

ML and FC data

S.7.3: Revise FC

START

S.1: Annota on work

S.7.2 Need

to modify

FC?

END

Yes

No

Figure 2. The outline of the proposed framework of cooperative learning

This flow reduces the expert’s effort for the following reasons. The expert only needs
to process a tiny number of data in Step 1 for the annotation work, and in Step 5, the
expert only needs to review a relatively small number of data. In addition, the expert’s
effort in creating the flowchart is small because it is mainly created by the worker based
on the data. On the other hand, the annotation work for ML can be semi-automated for
a large amount of data since the flowchart is used to perform the annotation work.

The general algorithm for this framework is as follows.
Step 1: Experts of the target domain perform the annotation work on a small dataset.
Step 2: Workers create a flowchart (FC) by the annotation data.
Step 3: Apply the FC to a larger dataset and obtain the judgment result.
Step 4: Experts review and revise the judgment result in Step 3. Workers revise the FC
according to the revised judgment result.
Step 5: Apply the FC to a larger and/or the same dataset and obtain the judgment
results of the FC as labeled datasets.
Step 6: Train an ML model (or ML models with cross-validation) by using revised labeled
dataset or dataset labeled by FC, and apply the ML model (or ML models) to the largest
dataset so far to obtain judgment result by ML models.
Step 7: Experts review only the data for which the judgment result of the ML model
or models differs from that of the FC and correct the labels. If any revisions are made,
workers modify the FC and go to Step 5. Otherwise, terminate the algorithm.

4.2. Implemented flow of the proposed framework. The proposed framework de-
scribed in Section 4.1 was implemented using three different datasets: a small dataset Da

consisting of 28 cases, a medium dataset Db consisting of 310 cases, and a large dataset
Dc consisting of 3157 cases. The specific flow is shown below.
Step 1: A nephrologist assigns one of the seven classes from R1 to R7 to each case in
the small dataset Da consisting of 28 cases based on comments made by physicians and
public health nurses. The obtained labeled dataset of Da is referred to as JDa.
Step 2: Workers create an FC F1 according to JDa.
Step 3: For each case in the medium dataset Db consisting of 405 cases, by applying F1,
one of the seven classes is assigned as a label. The labeled dataset of Db by F1 is referred
to as JF b1.
Step 4: The nephrologist reviews and revises the labels of JF b1, where the classes of
labels are reduced from the seven classes to the six classes of R1∼R6. The revised labeled
dataset of Db is referred to as JD b1. According to JD b1, the worker revises F1 as F2.
Step 5: For each case in Db, by applying F2, one of the six classes R1∼R6 is assigned as
a label. As a result, a labeled dataset JF b2 is obtained for Db.
Step 6: All cases of Db are judged by ML models provided from leave-one-out cross-
validation (LOOCV) with JD b1 of the training data set. The obtained ML models and
the judgment result of Db by Mb1 are referred to as Mb1 and JM b1, respectively.
Step 7: The nephrologist reviews only cases where JD b1, JF b2, and JM b1 did not match,
and revises JD b1 as JD b2. According to JD b2, the worker revises F2 as F3.
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Step 5 (2nd): For each case in Db and Dc consisting of 3157 cases, by applying F3, one
of the six classes R1∼R6 is assigned as a label. The obtained labeled datasets of Db and
Dc by F3 are referred to as JF b3 and JF c3, respectively.
Step 6 (2nd): An ML model Mb2 is trained by using JD b2 as the training dataset. All
cases of Dc are judged by the ML model Mb2, and the judgment result JM c2 on Dc by
Mb2 is obtained.
Step 7 (2nd): The nephrologist reviews only cases where JF c3 and JM c2 did not match,
and creates the labeled dataset JD c3 for Dc, where the classes of labels are reduced to the
four classes of R1, R3, R4, and R5. According to JD c3, the worker revises F3 as F4.
Step 5 (3rd): For each case in Dc, by applying F4, one of the four classes is assigned as
a label. The obtained labeled datasets of Dc by F4 are referred to as JF c4.
Step 6 (3rd): All cases of Dc are judged by ML models provided from 5-fold cross
validation with JF c4 of the training data set. The obtained ML models and the judgment
result of Dc are referred to as Mc4 and JM c4, respectively.
Step 7 (3rd): The flow completes with the final FC F4, FC’s judgment JF c4, ML models
Mc4 and ML’s judgment JM c4.

5. Judgment Suggestion Using Machine Learning and Flowchart. In the judg-
ment of trends in KF, although the flowchart has clear criteria, there are cases where the
physician’s conclusion differs from the flowchart’s. On the other hand, although machine
learning can make flexible judgments that cannot be made with the flowchart, the basis
for such conclusions is unclear. To address these issues, we propose a system that assists
physicians in making decisions by combining flowchart judgments and machine learning
judgments.
Using the final flowchart F4 and machine learning modelM4 constructed in the flow pre-

sented in Section 4.2, we develop a system that presents information to help the physician
make a decision. The LightGBM is used as the machine learning model, and its decision
result can output the probability for each class in addition to the decision class. In pre-
senting information, these probabilities are also utilized. The proposed system shows the
following information related to judgment: 1) The judgment result of FC F4 and 2) M4’s
predicted probabilities of classes R1, R3, R4, and R5.
Figure 3 shows an example of information presented by the proposed system. In the

table of “Suggestion by FC and ML”, the four classes of R1, R3, R4, and R5 are displayed
in descending order of M4’s predicted probabilities. In column “FC”, the judgment of F4

is marked with “*”. If the FC’s decision agrees with the ML’s one having the highest
predicted probability, then the physician may simply adopt that decision. Otherwise,
the physician may make a selection based on his or her own thinking from those that
have higher prediction probabilities. This procedure of decision making would allow the
physician to make a prompt decision.

eGFR by year

Year 2016 2017 2018 2019 2020

eGFR 81.0 57.0 61.1 54.6 47.8

Suggestion by FC and ML

FC Probability Trend

* 54.6 % R5. Rapidly decreasing

38.2 % R4. Decreasing

26.8 % R3. Slow but steadily decreasing

4.5 % R1. Preserved

Figure 3. An example of information presented by the suggestion system
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Table 1. Evaluation results on flowcharts F1, F2, F3, and F4

(a) For F1 when ground truth is JDb1

Precision Recall F1-score Support

R1 0.8294 0.9959 0.9050 244
R2 0.0000 0.0000 0.0000 9
R3 0.0000 0.0000 0.0000 27
R4 0.7778 0.4667 0.5833 15
R5 0.1667 0.5000 0.2500 2
R6 0.0000 0.0000 0.0000 13

Accuracy 0.8097 310

(b) For F2 when ground truth is JDb2

Precision Recall F1-score Support

R1 0.9750 0.9590 0.9669 244
R2 0.8333 0.5556 0.6667 9
R3 0.6053 0.8519 0.7077 27
R4 0.8000 0.5333 0.6400 15
R5 0.1667 0.5000 0.2500 2
R6 0.5000 0.3846 0.4348 13

Accuracy 0.8903 310

(c) For F3 when ground truth is JDb2

Precision Recall F1-score Support

R1 0.9556 0.8811 0.9168 244
R2 0.4167 0.5556 0.4762 9
R3 0.4545 0.9259 0.6098 27
R4 0.8000 0.5333 0.6400 15
R5 0.1667 0.5000 0.2500 2
R6 0.5000 0.0769 0.1333 13

Accuracy 0.8226 310

(d) For F3 (4 classes) when ground truth is JDb2

Precision Recall F1-score Support

R1 0.9556 0.8811 0.9168 244
R3 0.4627 0.8611 0.6019 36
R4 0.8333 0.3571 0.5000 28
R5 0.1667 0.5000 0.2500 2

Accuracy 0.8290 310

(e) For F4 when ground truth is JDb2

Precision Recall F1-score Support

R1 0.9569 0.9098 0.9328 244
R3 0.5200 0.7222 0.6047 36
R4 0.5556 0.5357 0.5455 28
R5 0.0000 0.0000 0.0000 2

Accuracy 0.8484 310
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6. Evaluation and Consideration.

6.1. Accuracy of flowcharts. In this section, we evaluate the accuracy of flowcharts
and ML models at each step of the flow presented in Section 4.2.
The FCs F1, F2, F3, and F4 use the number of examinations N , the last year’s eGFR

xY , the eGFR change per year (xY − x1)/(Y − 1), the regression line’s slope a given by
Equation (1), and the number of up/down movements in eGFR as explanatory variables.
The evaluation results on FCs F1, F2, F3, and F4 are shown in Table 1. In the evaluation,

since the cases of N = 1 are excluded, there is no data with the label R7. From the results,
it can be observed that the accuracy of F2 is improved from F1. In particular, F1 has
scores of 0 for R2, R3, and R6, which is due to inappropriate conditions. This defect has
been fixed in F2. The accuracy of F3 is lower than F2. This is due to the fact that the
conditions for F3 are more concise, giving priority to interpretability. At this point, we
considered changing from 6 classes to 4 classes and confirmed that this would improve
accuracy. F4 is more accurate than F3.

6.2. Accuracy of machine learning models. Table 2 shows the accuracy of ML mod-
els assuming JF c4 is ground truth (GT). The ML models for JM c2 and JM c4 are logistic
regression and LightGBM, respectively. JM c2 has much worse accuracy for R2, R4, R5,
and R6. In contrast, in the final model JM c4, which is for four-class classification, the
accuracy of all classes has much improved and achieved accuracy of 98%. On the other
hand, in [6], using in-hospital data, ML is applied to predicting the time to dialysis as a
four-class classification problem, achieving 89% accuracy for extremely randomized trees.

Table 2. Confusion matrices for ML models

(a) For JM c2 when ground truth is JF c3

ML\GT R1 R2 R3 R4 R5 R6 Prec.

R1 1995 58 203 20 6 1 0.874
R2 63 3 7 5 3 3 0.036
R3 30 13 133 24 6 0 0.646
R4 24 7 37 46 16 2 0.348
R5 0 0 0 4 30 0 0.882
R6 23 1 34 11 32 4 0.038

Rec. 0.934 0.037 0.321 0.418 0.323 0.400 Acc.

F1 0.903 0.036 0.429 0.380 0.472 0.070 0.777

(b) For JM c4 when ground truth is JF c4

ML\GT R1 R3 R4 R5 Prec.

R1 2441 7 6 0 0.995
R3 15 366 7 0 0.943
R4 12 7 261 4 0.919
R5 0 0 4 27 0.871

Rec. 0.989 0.963 0.939 0.871 Acc.

F1 0.992 0.953 0.929 0.871 0.980

Table 3 shows the confusion matrices of the final ML model Mc4 assuming JD c4 is GT,
where JD c4 is nephrologist’s judgment. Table 3(b) is the result when the first and second
rankings are considered as the correct answer. It can be observed that most of the correct
answers are contained in the top two predictions of the final ML model Mc4.
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Table 3. Confusion matrices of ML model Mc4 when ground truth is JD c4

(a) When only the first ranking is considered as

the correct answer

ML\GT R1 R3 R4 R5

R1 2449 2 3 0
R3 14 371 3 0
R4 12 4 268 0
R5 0 1 3 27

(b) When the first and second rankings are

considered as the correct answer

ML\GT R1 R3 R4 R5

R1 2472 0 0 0
R3 0 376 0 0
R4 3 1 277 0
R5 0 1 0 27

Table 4. Confusion matrices for data where FC and ML did not match

(a) Confusion matrix of ML and FC

ML\FC R1 R3 R4 R5

R1 0 7 4 0
R3 15 0 7 0
R4 11 7 0 4
R5 0 0 4 0

(b) Confusion matrix of ML and JDc4

ML\GT R1 R3 R4 R5

R1 8 2 1 0
R3 14 5 3 0
R4 11 4 7 0
R5 0 1 3 0

(c) Confusion matrix of ML’s 1st and 2nd ranking and JDc4

ML\GT R1 R3 R4 R5

R1 30 0 0 0
R3 0 10 0 0
R4 3 1 14 0
R5 0 1 0 0

Table 4 shows the confusion matrices for data where FC and ML did not match. Ac-
cording to Table 4(a), in 59 out of 3157 cases, F4 and Mc4 decisions were in disagreement.
Table 4(b) shows that Mc4 gave the correct answer in 20 out of the 59 cases. Furthermore,
Table 4(c) shows that in 54 out of the 59 cases, the correct decision is among the top two
predictions of Mc4.

7. Conclusion. In this paper, we proposed cooperative learning and a decision assistance
system to reduce the labor required for physicians to make diagnosis of kidney function.
The evaluation results demonstrated that 1) collaborative learning improves the accuracy
of the flowcharts and ML models and 2) the combined system of flowchart and ML models
created by cooperative learning presents useful information to assist physicians in making
decisions. In future works, we will apply the proposed system for actual review meetings
to evaluate and improve the system.
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