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Abstract. We establish that under certain conditions, the generating matrix for the

generalized Fibonacci sequence of order k can be diagonalized by a Vandermonde matrix.

The purpose of this work is to investigate the properties of the generating matrix for

the generalized Fibonacci sequence of order k and to derive new results related to its

diagonalizability and applications. The results include a closed-form expression for the

matrix’s powers and the determinant of a related Toeplitz matrix.
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1. Introduction. The generalized Fibonacci sequence (Tn)n≥0 of order k ≥ 2 is defined
by T0 = T1 = · · · = Tk−2 = 0, Tk−1 = 1, and for all n ≥ k,

Tn = a1Tn−1 + a2Tn−2 + · · ·+ akTn−k, (1)

where a1, . . . , ak are nonzero integers. For k = 2, the sequence (Tn)n≥0 reduces to the
usual Lucas sequence. The recurrence relation for the generalized Fibonacci sequence can
be expressed in matrix form. Let

Tn = (Tn Tn−1 · · · Tn−k+1)
T

and define the matrix Ak by

Ak =















a1 a2 . . . ak−1 ak
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0















.

Then we have the equation Tn = AkTn−1. The matrix Ak is said to be the generating (or
companion) matrix of the generalized Fibonacci sequence of order k. For the cases k = 2
and k = 3, the mth (m ≥ 1) power of the generating matrix Ak is extensively investigated
(see, for example, Cerda-Morales [1], Shannon and Horadam [2], and Waddill [3]), yielding
the forms shown in the following equations:

Am
2 =

(

Tm+1 a2Tm

Tm a2Tm−1

)

and Am
3 =







Tm+2 Tm+3 − a1Tm+2 a3Tm+1

Tm+1 Tm+2 − a1Tm+1 a3Tm

Tm Tm+1 − a1Tm a3Tm−1






.
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This study investigates the power of the generating matrix Ak for higher orders. We
prove that, under specific conditions, the generating matrix of the generalized Fibonacci
sequence of order k can be diagonalized by a Vandermonde matrix, enabling a closed-form
expression for the matrix’s power and recovery of well-known Lucas sequence identities.
Prasad and Mahato [4] explored a specific form of the matrix with a1 = a2 = · · · = ak = 1,
leading to cryptographic applications. Additionally, we present a closed form for the de-
terminant of a Toeplitz matrix whose entries are the generalized Fibonacci sequence of
order k. Toeplitz matrices, noted for their unique structure and applications in signal pro-
cessing, control theory, and numerical analysis (Gray [5], Trench [6]), are complemented
by our result, offering a general method for determining such matrices’ determinants. The
advantages of these methods include leveraging matrix diagonalization for closed-form ex-
pressions, despite the complexity of generalizing to higher-order sequences and intricate
calculations.
The remainder of this paper is organized as follows. Section 2 covers definitions and

preliminaries related to the generalized Fibonacci sequence, its generating matrix, and the
Vandermonde matrix. Section 3 presents our main result on the diagonalizability of the
generating matrix and derives its power’s closed form, offering a combinatorial perspective
different from Taher and Rachidi [7]. In Section 4, we link our results to Lucas sequences,
recover known identities, and provide a closed form for the determinant of a Toeplitz
matrix containing generalized Fibonacci sequences.

2. Preliminaries. Lemma 2.1 is a curious spectral property of the generating matrix
Ak. Lemma 2.2 provides an explicit formula for the generalized Fibonacci sequence of
order k (see, for example, Kalman [8] and Levesque [9]).

Lemma 2.1. Suppose that the zeros α1, . . . , αk of the characteristic polynomial p(x) =
xk−a1x

k−1−· · ·−ak of (1) are distinct. Then α1, . . . , αk are the eigenvalues of the matrix
Ak. Moreover, the eigenvectors v1, . . . ,vk corresponding to α1, . . . , αk, respectively, are
given by

vj =
(

αk−1
j αk−2

j · · · 1
)T

, 1 ≤ j ≤ k.

Proof: Let λ be an eigenvalue of the generating matrix Ak. We require that

det(λIk −Ak) = 0,

where Ik is the identity matrix of order k. We claim that the determinant on the left-hand
side of the equation has the form

det(λIk −Ak) = λk − a1λ
k−1 − · · · − ak.

This would show that λ is a zero of the characteristic polynomial p(x), and thus proving
the first part of the theorem. This claim follows from a general formula that, for any x,
b1, . . . , bk (k ≥ 2), we have

det(xIk −Bk) = xk − b1x
k−1 − · · · − bk,

where Bk is a square matrix of the form

Bk =















b1 b2 . . . bk−1 bk
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0















.

We prove the formula by induction on k. For k = 2, we have

det(xI2 −B2) = x(x− b1)− (−b2)(−1) = x2 − b1x− b2.
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Hence, the formula holds for k = 2. We assume that the formula holds for k − 1 where
k ≥ 3 and prove that it also holds for k. Expanding the determinant along the last column
of the matrix xIk −Bk, we obtain

det(xIk −Bk) = (−1)k+1(−bk)M1k + (−1)k+kxMkk,

where Mij is the minor of the entry in row i and column j of the matrix. We observe that
M1k is the determinant of a (k−1)×(k−1) upper triangular matrix whose main diagonal
entries are −1, so M1k = (−1)k−1. The minor Mkk is the determinant of the matrix of the
form xIk−1 −Bk−1. Applying the induction hypothesis, we obtain

det(xIk −Bk) = (−1)k+1(−bk)(−1)k−1 + (−1)k+kx
(

xk−1 − b1x
k−2 − · · · − bk−1

)

= xk − b1x
k−1 − · · · − bk,

completing the proof of the formula by induction. To prove the second part of the theorem,
it suffices to observe the identities

Akvj = αjvj

for j = 1, . . . , k. These identities follow, since αk
j = a1α

k−1
j + · · ·+ ak for j = 1, . . . , k. 2

Lemma 2.2. Suppose that the zeros α1, . . . , αk of the characteristic polynomial p(x) of
(1) are distinct. Then the general term of the generalized Fibonacci sequence (Tn)n≥0 of
order k is given explicitly by

Tn =
k
∑

i=1

αn
i

∏k
j=1
j 6=i

(αi − αj)
, n ≥ 0. (2)

We now introduce the square matrix Vk of order k, known as the Vandermonde matrix,
defined as follows:

Vk =















αk−1
1 αk−1

2 . . . αk−1
k

αk−2
1 αk−2

2 . . . αk−2
k

...
...

. . .
...

1 1 . . . 1















, (3)

where α1, . . . , αk are distinct. The multiplicative inverse of this matrix is of particular
importance in our analysis, as it plays a pivotal role in the development of the forthcoming
results.

Theorem 2.1. The determinant of the Vandermonde matrix Vk is given by

det(Vk) =
∏

1≤i<j≤k

(αi − αj). (4)

Proof: We use elementary column operations and the Laplace expansion. We start by
subtracting consecutive columns and leaving alone the last column, which gives us

det(Vk) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

αk−1
1 − αk−1

2 αk−1
2 − αk−1

3 . . . αk−1
k

αk−2
1 − αk−2

2 αk−2
2 − αk−2

3 . . . αk−2
k

...
...

. . .
...

α1 − α2 α2 − α3 . . . αk

0 0 . . . 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Next, we factor out the term (αi − αi+1) for 1 ≤ i ≤ k − 1 from each column, obtaining

det(Vk) =
k−1
∏

i=1

(αi − αi+1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑k−2
ℓ=0 α

ℓ
1α

k−2−ℓ
2

∑k−2
ℓ=0 α

ℓ
2α

k−2−ℓ
3 . . . αk−1

k

∑k−3
ℓ=0 α

ℓ
1α

k−3−ℓ
2

∑k−3
ℓ=0 α

ℓ
2α

k−3−ℓ
3 . . . αk−2

k

...
...

. . .
...

1 1 . . . αk

0 0 . . . 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We then compute the determinant using Laplace expansion along the last row:

det(Vk) =
k−1
∏

i=1

(αi − αi+1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑k−2
ℓ=0 α

ℓ
1α

k−2−ℓ
2

∑k−2
ℓ=0 α

ℓ
2α

k−2−ℓ
3 . . .

∑k−2
ℓ=0 α

ℓ
k−1α

k−2−ℓ
k

∑k−3
ℓ=0 α

ℓ
1α

k−3−ℓ
2

∑k−3
ℓ=0 α

ℓ
2α

k−3−ℓ
3 . . .

∑k−3
ℓ=0 α

ℓ
k−1α

k−3−ℓ
k

...
...

. . .
...

1 1 . . . 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Repeating the same process to the above determinant and so on, we finally arrive at the
identity (4) as desired. 2

Theorem 2.2. The multiplicative inverse of the Vandermonde matrix Vk is given by

V−1
k =







α
j−1
i − a1α

j−2
i − a2α

j−3
i − · · · − aj−1

∏k
n=1
n 6=i

(αi − αn)







1≤i,j≤k

. (5)

Proof: It suffices to verify that the product of the matrix on the right-hand side in the
above equation and the Vandermonde matrix Vk gives the identity matrix Ik of order k.
The entry in row i and column j of this product is given by

αk−i
1 ·

α
j−1
1 − a1α

j−2
1 − a2α

j−3
1 − · · · − aj−1

∏k
n=1
n 6=1

(α1 − αn)
+ · · ·

+αk−i
k ·

α
j−1
k − a1α

j−2
k − a2α

j−3
k − · · · − aj−1

∏k
n=1
n 6=k

(αk − αn)

=
k
∑

m=1

αk−i+j−1
m

∏k
n=1
n 6=m

(αm − αn)
− a1

k
∑

m=1

αk−i+j−2
m

∏k
n=1
n 6=m

(αm − αn)
− · · · − aj−1

k
∑

m=1

αk−i
m

∏k
n=1
n 6=m

(αm − αn)

= Tk−i+j−1 − a1Tk−i+j−2 − · · · − aj−1Tk−i,

where the last equality follows from Lemma 2.2. We see that for i = j, this entry is

Tk−1 − a1Tk−2 − · · · − ai−1Tk−i = 1− a1(0)− · · · − ai−1(0) = 1

and for i 6= j, this entry is

Tk−i+j−1 − a1Tk−i+j−2 − · · · − aj−1Tk−i = 0− a1(0)− · · · − aj−1(0) = 0.

Hence, the product of these two matrices yields the identity matrix of order k, and
therefore, the inverse of the Vandermonde matrix is justified. 2

Remark 2.1. The numerators of the entries of the matrix (5) satisfy the recurrence
(vi,j)1≤i,j≤k given by vi,1 = 1 for 1 ≤ i ≤ k and vi,j = αivi,j−1 − aj−1 for 1 ≤ i, j ≤ k.
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3. Main Theorem. Now, we are ready to present our main theorem.

Theorem 3.1. The mth (m ≥ 1) power of the generating matrix of the generalized
Fibonacci sequence of order k is given by

Am
k =



Tm+k−i+j−1 −

j−1
∑

ℓ=1

aℓTm+k−i+j−ℓ−1





1≤i,j≤k

. (6)

Proof: By Lemma 2.1, diagonalizing the generating matrix of generalized Fibonacci
sequence of order k and raising to the mth power, we obtain

Am
k =













αk−1
1 αk−1

2 . . . αk−1
k

αk−2
1 αk−2

2 . . . αk−2
k

...
...

. . .
...

1 1 . . . 1























αm
1 0 . . . 0

0 αm
2 . . . 0

...
...

. . .
...

0 0 . . . αm
k























αk−1
1 αk−1

2 . . . αk−1
k

αk−2
1 αk−2

2 . . . αk−2
k

...
...

. . .
...

1 1 . . . 1













−1

=













αm+k−1
1 αm+k−1

2 . . . αm+k−1
k

αm+k−2
1 αm+k−2

2 . . . αm+k−2
k

...
...

. . .
...

αm
1 αm

2 . . . αm
k

























αk−1
1 αk−1

2 . . . αk−1
k

αk−2
1 αk−2

2 . . . αk−2
k

...
...

. . .
...

1 1 . . . 1













−1

.

By Theorem 2.2, substituting the multiplicative inverse of the Vandermonde matrix (5)
into the above equation, we obtain

Am
k =

(

αm
j vj

)

1≤j≤k







α
j−1
i − a1α

j−2
i − a2α

j−3
i − · · · − aj−1

∏k
n=1
n 6=i

(αi − αn)







1≤i,j≤k

,

where vj ’s are defined as in the statement of Lemma 2.1. The entry in row i and column
j of this product is given by

k
∑

i=1

α
m+k−i+j−1
i

∏k
j=1
j 6=i

(αi − αj)
−

j−1
∑

ℓ=1

aℓ

k
∑

i=1

α
m+k−i+j−ℓ−1
i

∏k
j=1
j 6=i

(αi − αj)
= Tm+k−i+j−1 −

j−1
∑

ℓ=1

aℓTm+k−i+j−ℓ−1,

where the equality follows from Lemma 2.2. Therefore, the proof is complete. 2

Another way to find the power of the generating matrix is by the reduction formula.

Theorem 3.2. The mth power of the generating matrix of generalized Fibonacci sequence
of order k, where m ≥ k, satisfies the following reduction formula:

Am
k =

k−1
∑

i=0

i
∑

j=0

ak−i+jTm−j−1A
i
k. (7)

Proof: Let m ≥ k be a positive integer. The product of the characteristic polynomial
p(x) = xk − a1x

k−1 − · · · − ak and the polynomial T (x) = Tk−1x
m + Tkx

m−1 + · · · +
Tm+k−1 results in a polynomial with a large number of coefficients that become zero. By
multiplying out and combining like terms, the result is expressed as follows:

T (x)p(x) = Tk−1x
m+k + (Tk − a1Tk−1)x

m+k−1 + (Tk+1 − a1Tk − a2Tk−1)x
m+k−2

+ (Tk+2 − a1Tk+1 − a2Tk − a3Tk−1)x
m+k−3 + · · ·

+



T2k−1 −
k
∑

i=1

aiT2k−i−1



 xm + · · ·+



Tm+k−1 −
k
∑

i=1

aiTm+k−i−1



 xk
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− · · · − (ak−3Tm+k−1 + ak−2Tm+k−2 + ak−1Tm+k−3 + akTm+k−4)x
3

− (ak−2Tm+k−1 + ak−1Tm+k−2 + akTm+k−3)x
2

− (ak−1Tm+k−1 + akTm+k−2)x− akTm+k−1

= Tk−1x
m+k +

k−2
∑

i=0



Tk+i −

i
∑

j=0

aj+1Tk+i−j−1



 xm+k−i−1

+



T2k−1 −

k−1
∑

j=0

aj+1T2k−j−2



 xm + · · ·+



Tm+k−1 −

k−1
∑

j=0

aj+1Tm+k−j−2



 xk

−
k−1
∑

i=0

i
∑

j=0

ak−i+jTm+k−j−1x
i.

It is evident that the coefficients of xm+k−1, . . . , xm, . . . , xk satisfy Equation (1) and thus
their values become 0. Applying the Cayley-Hamilton theorem by substituting x with Ak

yields

0k = T (Ak)p(Ak) = Tk−1A
m+k
k −

k−1
∑

i=0

i
∑

j=0

ak−i+jTm+k−j−1A
i
k,

where 0k is a square zero matrix of order k. Since Tk−1 = 1, we have

Am+k
k =

k−1
∑

i=0

i
∑

j=0

ak−i+jTm+k−j−1A
i
k.

We have the desired formula by shifting the power m by m− k. 2

4. Applications. We recall the famous Cassini’s identity of the Fibonacci numbers. It
can be proved by finding the determinant of An

2 where p = 1 and q = −1:
∣

∣

∣

∣

∣

Fn+1 Fn+2 − Fn+1

Fn Fn+1 − Fn

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Fn+1 Fn

Fn Fn−1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1 1
1 0

∣

∣

∣

∣

n

; that is, Fn−1Fn+1 − F 2
n = (−1)n.

For arbitrary p and q, we have
∣

∣

∣

∣

∣

Tn+1 Tn+1 − pTn+1

Tn Tn+1 − pTn

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Tn+1 qTn

Tn qTn−1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

p q

1 0

∣

∣

∣

∣

n

; that is, Tn−1Tn+1 − T 2
n = (−1)nqn−1.

We apply this concept to the determinant of the generating matrix’s power for the gen-
eralized Fibonacci sequence of order k, thereby deriving the generalized Cassini’s identity
in the subsequent theorem.

Theorem 4.1. Let n and k be positive integers. Then
∣

∣

∣

∣

∣

∣

∣

∣

∣

Tn+k−1 Tn+k · · · Tn+2k−2

Tn+k−2 Tn+k−1 · · · Tn+2k−3
...

...
. . .

...
Tn Tn+1 · · · Tn+k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
(

(−1)k+1ak

)n

. (8)

Proof: We find the determinant of the power of the generating matrix of the Fibonacci
sequence of order k in Equation (6) in two different ways. First, we apply the i-th column

operation Ci+1 +
∑i

j=1 ajCj for i = 1, 2, . . . , k − 1 and then find its determinant. This
yields
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det(An
k) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

Tn+k−1 Tn+k · · · Tn+2k−2

Tn+k−2 Tn+k−1 · · · Tn+2k−3
...

...
. . .

...
Tn Tn+1 · · · Tn+k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

On the other hand, we can find the determinant by diagonalization. Since An
k =

VkD
n
kV

−1
k where Dk is a diagonal matrix whose entries on its main diagonal are α1, α2, . . . ,

αk, we have det(An
k) =

(

det(Dk)
)n

= (α1α2 · · ·αk)
n. By Viete’s formula, the product of

the zeros α1, α2, . . . , αk of the characteristic polynomial in Lemma 2.1 equals (−1)k+1ak.
Therefore,

det(An
k) =

(

(−1)k+1ak

)n

and the proof is complete. 2

We can see that the matrix in the left-hand side of (8) is a Toeplitz matrix. Since
Toeplitz matrix is persymmetric, we can map the entries in the Toeplitz matrix (ci,j)1≤i,j≤k

as follows:
ci,j 7→ ci−j = Tn+k−(i−j)−1.

The following diagram shows how this map maps the entries in a Toeplitz matrix of order
k.

c1,1 c1,2 · · · · · · c1,k−2 c1,k−1 c1,k

c2,1 c2,2 c2,3 · · · · · · c2,k−1 c2,k

... c3,2 c3,3
. . . · · · · · · c3,k

...
...

. . .
. . .

. . .
...

...

ck−2,1 · · · · · ·
. . .

. . . ck−1,k−2
...

ck−1,1 ck−1,2 · · · · · · ck−2,k−1 ck−1,k−1 ck−1,k

ck,1 ck,2 ck,3 · · · · · · ck,k−1 ck,k

Tn Tn+1 Tn+2 Tn+k−2 Tn+k−1

Tn+k

Tn+2k

Tn+2k−1

Tn+2k−2

The determinant of the Toeplitz matrix is explicitly expressed in the following theorem.

Theorem 4.2. Let n and k be positive integers. Then
∣

∣

∣

∣

∣

∣

∣

∣

∣

Tn+k−1 Tn+k · · · Tn+2k−2

Tn+k−2 Tn+k−1 · · · Tn+2k−3
...

...
. . .

...
Tn Tn+1 · · · Tn+k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∑

t1+t2+···+tk=(k−1)k

sgn(σ)Tn+t1Tn+t2 · · ·Tn+tk ,

where tℓ = k−(ℓ−σ(ℓ))−1 for each ℓ = 1, . . . , k and σ is a permutation of {1, 2, 3, . . . , k}.

Proof: The formula is precisely the generalized Leibniz’s formula for computing the
determinant by letting tℓ = k − (ℓ− σ(ℓ))− 1 for each ℓ = 1, . . . , k. Therefore, it suffices
to show that

k
∑

ℓ=1

tℓ =

k
∑

ℓ=1

(

k −
(

ℓ− σ(ℓ)
)

− 1
)

= (k − 1)k.

This follows, since
∑k

ℓ=1 ℓ =
∑k

ℓ=1 σ(ℓ). 2
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Example 4.1. For k = 3, we consider S3, the permutation group of {1, 2, 3}. The ele-
ments of this group are

σ1 =( ), σ4 =(13),

σ2 =(123), σ5 =(23),

σ3 =(132), σ6 =(12).

For any 3× 3 Toeplitz matrix (ci,j)i,j, we have

c3,1 7→ Tn, c1,3 7→Tn+4,

c2,1, c3,2 7→ Tn+1, c1,2, c2,3 7→Tn+3,

and c1,1, c2,2, c3,3 7→ Tn+2.

Since σ1, σ2, σ3 are even permutations in S3, their signs are 1. On the other hand, σ4,
σ5, σ6 are odd permutations in S3, and their signs are −1.
By Theorem 4.2, the determinant of any 3× 3 matrix is given by

c1−σ1(1)c2−σ1(2)c3−σ1(3) + c1−σ2(1)c2−σ2(2)c3−σ2(3) + c1−σ3(1)c2−σ3(2)c3−σ3(3)

− c1−σ4(1)c2−σ4(2)c3−σ4(3) − c1−σ5(1)c2−σ5(2)c3−σ5(3) − c1−σ6(1)c2−σ6(2)c3−σ6(3)

= Tn+2Tn+2Tn+2 + Tn+3Tn+3Tn + Tn+4Tn+1Tn+1 − TnTn+2Tn+4 − Tn+1Tn+3Tn+2

−Tn+2Tn+1Tn+3.

Therefore, the determinant of An
3 is given by

∣

∣

∣

∣

∣

∣

Tn+2 Tn+3 Tn+4

Tn+1 Tn+2 Tn+3

Tn Tn+1 Tn+2

∣

∣

∣

∣

∣

∣

= T 3
n+2 + TnT

2
n+3 + T 2

n+1Tn+4 − TnTn+4Tn+2 − 2Tn+1Tn+3Tn+2.

5. Conclusions. In this study, we have demonstrated that the generating matrix for the
generalized Fibonacci sequence of order k can be diagonalized by a Vandermonde matrix
under specific conditions. This result enables us to derive a closed form for the power of the
generating matrix, which in turn allows us to recover well-known identities. Additionally,
we provided a closed-form expression for the determinant of a Toeplitz matrix containing
generalized Fibonacci sequences.
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