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Abstract. The importance of geomagnetic disturbances represented by ground earth
activities based on the disturbance storm time (Dst index) entails an early forecast of
geomagnetic storm occurrence, which could potentially disrupt the system operations.
Often, the forecast outcome serves as an essential indicator for operational users who
not only require early forecasting prior to incoming geomagnetic storms but also intend
to obtain explainable insight and understanding of the generated forecast results. There-
fore, a new model architecture, namely neural-basis expansion analysis for interpretable
time series (N-BEATS), is proposed that incorporates a more transparent architecture of
the deep learning model into producing the multiple steps ahead forecasting of the Dst
index. Extensive comparisons among several deep learning models, namely long short-
term memory (LSTM), gated recurrent units (GRU), and bidirectional GRU (Bi-GRU)
network architectures, will be assessed, considering the model performances, and the im-
pact of forecast variability will be discussed. The superiority of N-BEATS overcomes the
state-of-the-art LSTM forecast model in terms of computational resources, and the effec-
tiveness of learning the data of the Dst index pattern could be observed.
Keywords: Neural beats model, Interpretable architecture, Disturbance storm time
forecasting, Deep learning, Space weather
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1. Introduction. Geomagnetic disturbance storm time (Dst index) forecasting poses
significant hurdles to developing an accurate model that alleviates uncertainties in the
developed model. This is due to the fact that complex nonlinear dynamics of interactions
between geomagnetic storms and ground earth are challenging to capture [1,2]. Exist-
ing works, including empirical, statistical, and machine learning, have demonstrated the
capabilities of various models, were examined through various means of prediction mod-
elling development, and further expanded into forecast applications. The evolution of
these methods somehow demonstrated positive improvements. In addition to huge data
availability, the continuing progress has been remarkable for the Dst index forecasting.
Prior to the breakthrough in deep learning, neural networks were the most preferential

use, which are composed of neurons and weights that learn and reduces the error from
the input data to be mapped into the designated output [3-5]. In spite of the capabilities
of neural networks demonstrated in capturing the nonlinearity complexity between data,
network tuning to search for the best hyperparameters must be configured for the most
optimal performance. Most recent approaches have prioritized the implementation of deep
network architecture to improve geomagnetic Dst index forecasting. The deep learning al-
gorithms possess advantages in capturing the complex dynamics in the dataset, recent
emerging implementations have progressively been under development. Notably, the suc-
cess of deep learning, which has been proven in several studies in the form of architectural
advances and new frameworks, has been astonishing. Furthermore, it opens new avenues
for efficient time-series forecasting to advance and outperform across a wide range of do-
mains. Consequently, pioneering deep learning implementation into Dst index forecasting
works rose, subsequently leading to the success of machine learning studies.
The present study’s contribution focuses on the comparative analysis of different archi-

tectures of deep network models. The effectiveness of the forecasting model focusing on the
geomagnetic disturbance index has been evaluated. However, no comparative evaluation
exists for depth evaluation between various deep network architectures. A state-of-the-art
model, namely N-BEATS, incorporates interpretability aspects in the architecture, im-
proving multistep forecasting to attain the best performances for a longer forecast horizon
for the Dst index. Inclusive interpretability assessments are essential for exploring new
architectures by incorporating trends and seasonality into the model. Accordingly, this
geomagnetic disturbance index model could be utilized as an operational forecast comple-
ment with fast computational results by considering long-term and complex data patterns
into consideration. This is particularly useful for geophysics and space weather studies to
allow proper mitigation actions involving earth technology systems. Therefore, it is sig-
nificant in geomagnetic activity monitoring that early anticipates the future value for
geomagnetic storm conditions.
The rest of the article’s content is organized as follows. Section 2 provides the lit-

erature review related to the progress of geomagnetic index forecasting and prediction.
Section 3 presents a detailed description of the workflow proposed architecture with vari-
ous methods of deep networks-based forecasting techniques using LSTM, GRU, Bi-GRU,
and N-BEATS. Section 4 discusses the simulation results and forecasting performance
with point-to-point error metrics evaluation. In this section, the best-selected model will
be proposed as a benchmark model for the geomagnetic Dst index. Section 5 provides the
conclusions and future research directions.

2. Related Research. Several studies have been conducted to continuously improve
the forecast model for use in geomagnetic activity monitoring, specifically the Dst index.
Gruet et al. [6] initiated an LSTM model that could produce accurate predictions for
up to three hours. The authors introduced the LSTM model with dense layers to form a
Gaussian-type probabilistic forecast that successfully improved the forecast performance
to a six-hour horizon at a correlation and RMSE of 87.3% and 9.86, respectively.
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Additionally, several studies have examined the capabilities of Dst index predictions
with a single architecture-based LSTM [7,8], modified LSTM networks [9-11], and a com-
bination of LSTM architecture configurations with other networks [12]. For instance,
Efitorov et al. [13] proposed a recurrent LSTM with 96 and 57 consecutive blocks with
an Adam training gradient, 0.45 of dropout, and regularization settings. The forecast of
twelve hours ahead demonstrated that the demerited performance of the multiple deter-
mination coefficient was 0.57, and the correlation coefficient was 0.76. Tasistro-Hart et
al. [14] proposed a similar deep learning structure that measures the uncertainty. How-
ever, the authors highlighted that including regularizing terms is far more important to
improve model reliability further. The farthest correlation coefficient reached up to six
hours at 88.3%, which was reduced by 10.45% from the one-hour forecast by Wintoft and
Wik [7] further explored the Dst forecast using three distinct recurrent neural network
(RNN), namely GRU, Elman and LSTM. Comparable performances can be seen between
GRU and LSTM, which outperform the Elman-based RNN model. The difference between
models can be seen from the different architectures used in which the GRU and LSTM
are composed of gating units that control the flow of information. Nevertheless, the GRU
network has a less complex architecture, thus producing a shorter training time. The best
model produced linear correlation and root mean square, respectively, at 0.90 and 8.8nT.

Other works have been proposed by improvising the network model. Abduallah et
al. [15] attempted to forecast the Dst index using the Dst Transformer model, which com-
bines a multi-head attention layer with Bayesian inference. The longest-horizon forecast
results in R-squared and root mean square errors of approximately 60% and 5.0nT. Xu et
al. [16] developed improved modelling using Bagging ensemble learning, which incorpo-
rates the combination of an LSTM network, artificial neural network, and support vector
regression able to produce a six-hour forecast that demonstrates the root mean square
error and correlation coefficient of 8.09nT and 85.72%. Cristoforetti et al. [17] introduced
the most recent structure of using the LSTM with fully connected neural network (FC-
NN). The model is composed of a modified LSTM network that concatenates the hidden
states, which are further fed as input to the fully connected layer. The attempt to fore-
cast the Dst index for up to twelve hours has demonstrated inconsistency in performance,
which varies according to the storm phases and feed training data, securing at least 77%
accuracy and 16% classification scores. Li et al. [18] implemented an improved LSTM
model to include layer-wise relevance propagation (LRP) as a feature selector by decom-
posing the model prediction in the form of a relevance score and then further analyzing
which features provided significant contributions.

The abovementioned works demonstrate impressive progress in forecasting the geo-
magnetic Dst index with various attempts on deep network models. While exploring deep
networks, LSTM serves as the benchmark model, which contains a gating layer to re-
tain past data. The model works well, especially for long data sets. However, it requires
high computational processing power. The effectiveness of the forecasting model focusing
on the geomagnetic disturbance index derived from geomagnetic observation data was
evaluated. Nevertheless, the possibility of more interpretable techniques to compare var-
ious deep network architecture multi-step-ahead tasks has not been extensively explored
to examine the deterioration in the reduced model performance. In fact, generalization
variabilities exist at various levels of geomagnetic storm categories that could influence
the performances of the deep learning model even though it can explore the hidden pat-
tern in the dataset. The capability of deep learning by some means has improved over
conventional Dst index prediction and forecasting. Hence, achieving a feasible approach
to enhancing the Dst index into a long-term forecast horizon with high accuracy and
interpretability of trustworthiness has been challenging.
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3. Methodology.

3.1. Deep learning forecasting strategies for the Dst index. The main aim is to
predict the future Dst index in the hourly resolution of data by considering the points
forecasting approach from the past Dst index input. This paper proposes to compare
the model performances among the different deep network architecture configurations as
the benchmark model to forecast the univariate data of the Dst index. This includes the
neural-basis expansion analysis for interpretable time series (N-BEATS), long short-term
memory (LSTM), gated recurrent units (GRU), and bidirectional GRU (Bi-GRU). In this
study, the Lazzús et al.’s model [19] functions as a base model reference with an improve-
ment and extension in model architecture, and the dataset used was incorporated into the
model. Model structure based on deep networks involves normalization and does not re-
quire an extensive pre-processing, trend, and seasonality analysis as per conventional time
series forecasting analysis. Data normalization rescales input data to a distribution value
between −1 and 1 with the aim that they can fit within the interval to result in faster
convergence of gradient descent in minimizing weight and bias. Meanwhile, model perfor-
mance compares how well the forecast and actual Dst index are performing. It is evaluated
with several indicators’ metrics relevant to error and correlation analysis to observe model
variability. This comprises mean squared error (MSE), mean absolute error (MAE), root
mean squared error (RMSE), mean absolute percentage error (MAPE), symmetric mean
absolute percentage error (sMAPE), mean absolute scaled error (MASE), training time,
testing time, correlation coefficient (CC) and multiple coefficients of determination (R2).
Furthermore, elaborations on principle, network architecture and corresponding layers
involved in the modelling are described in the next section.

3.2. N-BEATS. Newly designed architecture based on deep residual networks proposed
by Oreshkin et al. [20] comprises several blocks, as shown in Figure 1. This consists

of stacks of input (xl) formed of a backcast link (θbl ), forecast link (θfl ), and four ful-
ly connected (FC) layers (hl,1, hl,2, hl,3, hl,4) with rectified linear unit (ReLU) activation
function. The process starts at block input, which considers the estimated data after con-
sidering the lookback and future values. Then, the block takes these coefficients of θbl and

θfl to produce the backcast (x̂l) and forecast (ŷl) signals. In the stack, these signals are

Figure 1. N-BEATS architecture
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split into two separate branches in which each block subtracts the backcast signal from
the input. Residuals are generated by subtracting the current value and looking back at
data to feed further into the stack. Residual errors are then modelled from the previous
block to improve forecast value and continuously repeat the process. This produces the
final forecast ŷ, which accumulates all the forecast signals. Furthermore, the blocks are
stacked in multiple forms to exploit the functionality similar to ensemble learning and
avoid gradient vanishing issues.

This novel model, also known as pure deep learning, demonstrates high confidence
in model performance in performing univariate, point-to-point, and multistep forecasts
without specific expert knowledge. Notably, the proposed model has several known ad-
vantages, such as being fast to train and flexible to implement without modification.

hl,1 = FCl,1(xl), hl,2 = FCl,2(hl,1), hl,3 = FCl,3(hl,2), hl,4 = FCl,4(hl,3) (1)

θfl = LINEARb
l (hl,4), θbl = LINEARf

l (hl,4) (2)

ŷl = gfl
�
θfl
�
, x̂ = gbl

�
θbl
�

(3)

xl = xl−1 − x̂l−1, ŷ =
X
l

ŷl. (4)

3.3. LSTM. A network comprises memory cells and gating mechanisms that control the
flow of information and learning long-term dependencies in the form of a data sequence.
Specifically, the LSTM model is composed of the cell state and three gates, namely the
input (it), output (ct), and forget (ft) gates, in which the cell transports the information
while this information is either added or removed via these nonlinear gates (see Figure
2). These gates are essential for learning the information fed through the cell state and
further keeping or forgetting the information during training. Notations for all parameters
include xt, ot, ht, t, it, ĉt, ct, wf = wc = wo, bf = bc = bo, which present the input value,
output value, hidden layer state value, moment, information that needs to be updated,
cell state, candidate memory, weights, and biases.

c(t) = ft ⊙ ct−1 + it ⊙ ĉt

= σ (wf · [ht−1, xt] + bf )⊙ ct−1 + σ (wf · [ht−1, xt] + bf )

⊙ tanh (wc · [ht−1, xt] + bc) (5)

ot = σ (wo · [ht−1, xt] + bo) (6)

ht = ot ⊙ tanh(ct) (7)

Figure 2. LSTM architecture

3.4. GRU. It is an improved version of the LSTM network, which utilized only two gate
mechanisms, namely, reset gate (rt) and update gate (zt) (see Figure 3). In the update
gate, the data are determined whether to be thrown or kept, while the reset gate decides
the past information to forget. These gates perform operations without separate memory
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Figure 3. GRU architecture

to handle information flow. This memory works to retain, filter, and combine information
from the previous state (ht−1), to produce the current state (ht), thereby reducing the
architecture complexity of the networks, less tensor operations, and faster to train.

zt = σ(wz · [ht−1, xt] + bz) (8)

rt = σ(wr · [ht−1, xt] + br) (9)

ht = (1− zt)⊙ ht−1 + zt ⊙ tanh(wh · [rt ⊙ ht−1, xt] + bh) (10)

3.5. Bidirectional GRU. Further modification to improve the GRU working principle
in unidirectional mode is by introducing the Bi-GRU to capture the information in dual
directions, i.e., left-to-right (forward) and right-to-left (backward) directions (see Figure
4). Here, xt, ot, ht, hk respectively present input value, output value, hidden state of
forward layer and hidden state of backward layer.

ht = f(w1xt + w2ht−1 + bt) (11)

hk = f(w3xt + w4hk−1 + bk) (12)

ot = (ht, hk) (13)

Figure 4. Bidirectional GRU architecture

This model consists of bidirectional connections that improvise the GRU architecture,
allowing the model to simultaneously learn from both directions in a sequence of past and
future data. With this extension form of GRU networks, the change in the Dst index in the
past and future could be captured. It is also efficient in handling long-term dependencies
and has the potential to outperform others in terms of speed and capturing complex
patterns.



ICIC EXPRESS LETTERS, VOL.19, NO.5, 2025 491

3.6. Evaluation of metrics performance. To compare performance between different
models, including error and regression metrics analysis for predicting the Dst index. Con-
sidering the lowest values of error along with the highest correlation in the measured
metrics of the Dst index suggests that the model has better performance in estimating fu-
ture Dst index values. Three indicators are used to evaluate the forecasting performances
using MSE, MAE, RMSE, MAPE, sMAPE and MASE by comparing the actual Dst and
forecasted Dst. Taking yact as the actual Dst at time t, yfct as the forecasting value at time
t, and N as the number of data samples, the metrics will be calculated as the following:

MSE =
1

N

NX
t=1

(yact − yfct)
2 (14)

MAE =
1

N

NX
t=1

|yact − yfct | (15)

RMSE =

Ì
1

N

NX
t=1

(yact − yfct)2 (16)

MAPE =
1

N

NX
t=1

|yact − yfct |
yact

(17)

sMAPE =
1

N

NX
t=1

|yact − yfct |
(|yact|+ |yfct |)/2

(18)

MASE =
1

N

NX
t=1

|yact − yfct |
1

N−1

PN
i=2 |yact − yfct − 1|

(19)

4. Results and Discussion.

4.1. Data description and platform development. The available Dst index data are
retrieved from the International Service of Geomagnetic Indices (ISGI)1 with a joint in-
stitute collaboration of the World Data Center for Geomagnetism, Kyoto2 . Geomagnetic
data analysis contains 327264 hours of data from January 9, 1986, to December 31, 2023,
covering four solar cycles (SC22-SC25) or equivalent to 37 years. These data samples are
partitioned into 90%-10% as training and testing sets simulated in the Python environ-
ment. During the training set, a cross-validation technique via rolling window analysis,
available as the TimeSeriesSplits class in the scikit-learn library, was incorporated to train
model development. The model hyperparameters were tuned, and then finally, the test
set with the unseen test set compared the model performances. Therefore, preserving the
temporal data sequence ensures robust and generalized model development.

4.2. Ablation analysis of multistep forecasting results. Examining the perfor-
mance of the Dst index is hourly forecasted from the horizon of 1-, 3-, 6-, 9-, and 12-
steps ahead of performances of the predicted Dst index. Comparisons among different
step-ahead performances were conducted to observe how the error metric performances
varied (see Figure 5). In this work, the best tuned hyperparameters were obtained based
on these configurations: number of hidden units per layer of 256, learning rate of 0.01,
batch size of 32, windows size of 24, number of epochs of 100, Adam optimizer and L2
regularization.

The superior, preferable forecasted Dst index can be selected through the lowest error
metrics which provide a comprehensive measure of accuracy to the produced forecasts.
Apparent trends could be observed, such as all error metrics decreasing at shorter hori-
zons. It is noteworthy that the N-BEATS model consistently exhibits the least variability.

1https://isgi.unistra.fr/index.php
2https://wdc.kugi.kyoto-u.ac.jp/
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Figure 5. Performance metrics to evaluate the model structure with dif-
ferent forecast horizons

The recorded values for MSE, MAE, RMSE, MAPE, sMAPE, and MASE, respectively,
were 12.92, 2.36, 3.58, 40.21, 84.07, and 0.97 during 1-step ahead. However, the forecast
horizon kept increasing into a longer duration of 12-step ahead, showing performances
were also among the lowest compared to other models with the least MSE, MAE, RMSE,
MAPE, sMAPE, and MASE, respectively, of 96.01, 6.23, 9.76, 94.98, 164.47 and 2.13.
N-BEATS steadily outperforms other models in terms of the most stable performance
across different horizons, demonstrating minimal error metrics. LSTM and GRU demon-
strated comparable error metrics performance, with GRU sometimes outperforming LS-
TM, which fluctuates inconsistently as the forecast horizon increases. This given by GRU
surpassed LSTM for 1-step ahead forecasts across all metrics, which was more effective in
short-term forecasting. GRU showed MSE, MAE, RMSE, MAPE, sMAPE, and MASE,
respectively, of 28.64, 3.89, 5.11, 69.08, 115.28, and 1.56. Meanwhile, LSTM showed MSE,
MAE, RMSE, MAPE, sMAPE, and MASE, respectively, of 153.83, 7.93, 11.73, 130.33,
179.97 and 3.30. Moreover, LSTM dominates to perform better than GRU for 6 to 12-step
ahead forecast horizons, showing LSTM capabilities at capturing patterns of long-term
dependencies. The Bi-GRU demonstrated a significant trend of underperforming poorly
the most when compared to other models. It even demonstrated the highest variabili-
ty among other models between 1-step (i.e., MSE, MAE, RMSE, MAPE, sMAPE, and
MASE, respectively, of 96.15, 7.02, 8.87, 119.20, 181.56, 2.82) and 12-step (i.e., MSE,
MAE, RMSE, MAPE, sMAPE and MASE, respectively, of 436.59, 15.72, 20.15, 303.35,
240.12 and 5.42) ahead forecast horizon. Hence, N-BEATS demonstrated superior perfor-
mance with the lowest error metrics across all forecast horizons among all tested models.
Computational processing time is also presented in Figure 6. Analysis of training and

testing time was recorded to examine the computing performance required when executing
the deep learning models. It can be observed that all models except N-BEATS spend thou-
sands of seconds training the deep learning model for Dst index forecasting. Training time
indicates that stable training time increases gradually as the forecast horizon expands.
Thus, the performance results are much more consistent. Huge computation resources
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Figure 6. Evaluation of computation processing time

with an average time of 2091.76 seconds by Bi-GRU have significantly peaked amongst
all models, indicating high computational cost for longer horizons due to the model’s
complexity in processing bidirectional data in both forward and backward directions. For
the testing time, a similar pattern was observed, such that Bi-GRU consumes the largest
computational testing time, N-BEATS used the least and most consistent testing time,
while LSTM and GRU have moderate testing times.

Figure 7 depicts the hyperparameters setting influences on the error of MSE. It denotes
that Bi-GRU and GRU were the most sensitive to the change in the learning rate. Most
of the models respond to low MSE, i.e., 0.01 when the learning rate was implemented in
the model, while vice versa, as the learning rate increased to 0.10, there was a significant
increase in the MSE. Similar to the learning rate, both Bi-GRU and GRU are also sensitive
to variation of MSE, which could be observed when changing window size. More stable
MSE variation could be observed for N-BEATS to remain low regardless of the setting
for hyperparameter changes. Notably, both LSTM and GRU performed at intermediate
levels; GRU was prone to more sensitive hyperparameter changes in all setting conditions
with slightly higher values than LSTM.

4.3. Geomagnetic storm events analysis. To visualize the forecasted Dst compared
to the actual Dst, a comparison between these predicted and the observed values plotting
and its regression metrics, namely correlation coefficient (CC) and multiple determina-
tion coefficient (R2), was examined, as shown in Figure 8. Examining the performances
throughout the test data on the selected geomagnetic storms on November 4, 2021 [21],
February 4, 2022 [22], and April 24, 2023 [23], which respectively present moderate, mi-
nor, and severe storms, was tested. Table 1 summarizes CC and R2, which were examined
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(a) (b)

(c)

Figure 7. MSE and hyperparameter sensitivity analysis of (a) the number
of hidden units, (b) learning rate, and (c) window size

Figure 8. Comparison of the dynamics of Dst plotting to compare between
actual Dst and forecasted Dst for the test dataset
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Table 1. Comparison of the N-BEATS performance of the Dst index from
April 7, 2020, to December 31, 2023, with the predictions that were made
1, 3, 6, 9, and 12 steps ahead. A comparison of selected geomagnetic storm
events in solar cycle 25 was also included.

Overall test data Nov 4th, 2021 Feb 4th, 2022 Apr 24th, 2023

Correlation coefficient (horizon)

CC (1) 0.9711 0.9648 0.9664 0.9893

CC (3) 0.8736 0.8588 0.8383 0.9305

CC (6) 0.7623 0.7019 0.6424 0.8100

CC (9) 0.6760 0.5440 0.4058 0.6917

CC (12) 0.5995 0.4102 0.2541 0.5221

Multiple determination coefficient (horizon)

R2 (1) 0.9431 0.9308 0.9340 0.9786

R2 (3) 0.7631 0.7376 0.7028 0.8658

R2 (6) 0.5811 0.4927 0.4127 0.6561

R2 (9) 0.4570 0.2959 0.1647 0.4785

R2 (12) 0.3593 0.1683 0.0645 0.2725

across the range of horizon between 1 and 12 steps ahead of forecasting. These indicators
are essential to demonstrate the prediction strength and direction between actual and
forecasted Dst index with higher values, which is normally preferable in model selection.
It demonstrates the Dst index forecasting of a step ahead as the best-performed model
with N-BEATS. The highest performance of CC = 0.9711 and R2 = 0.9431 demonstrates
a strong predictive ability at the 1-step ahead of horizon. This correlation is observed to
be almost consistent across geomagnetic storms over time. As the horizon increases, these
metrics exhibit a decreasing pattern with increasing horizons, implying weaker predictive
power. However, it was notable that at least 70% and 50% were presented in both CC
and R2 performances for at least a 9-step ahead of horizon.

5. Conclusions. To conclude, the proposed novel model of Dst index forecasting using
N-BEATS outperformed other models with high accuracy and improved the forecasting
in comparison. The N-BEATS model is capable of accurately tracking the geomagnetic
storm events for up to 97% correlation, 95% multiple determination coefficient, and lowest
error metrics. This includes MSE, MAE, RMSE, MAPE, sMAPE, and MASE, among all
deep network models. Moreover, the N-BEATS model has proven to add advantages in
terms of fast computing training and testing time, minimal error variability with good
consistencies, and generalization properties to learn the patterns, which have performed
remarkably well. Future research will extend the Dst index prediction onto long-term
forecasting, providing a more accurate lead to better prediction outcomes. In addition,
implementing advanced predictions, which require limited computational resources in real-
time operational forecasting, will benefit from the faster prediction process, which may
be considered.
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[19] J. A. Lazzús, P. Vega, P. Rojas and I. Salfate, Forecasting the Dst index using a swarm-optimized
neural network, Sp. Weather, vol.15, no.8, pp.1068-1089, 2017.

[20] B. Oreshkin, G. Dudek, P. Pe lka and E. Turkina, N-BEATS neural network for mid-term electricity
load forecasting, Appl. Energy, vol.293, 116918, 2021.

[21] T. M. Matamba, D. W. Danskin, R. R. Nndanganeni and M. Tshisaphungo, Space weather impacts
on the ionosphere over the southern African mid-latitude region, Earth, Planets Sp., vol.75, no.1,
142, 2023.

[22] R. Bojilova and P. Mukhtarov, Comparative analysis of global and regional ionospheric responses
during two geomagnetic storms on 3 and 4 February 2022, Remote Sens., vol.15, 1739, 2023.

[23] S. S. K. Rajana et al., Impact of two severe geomagnetic storms on the ionosphere over Indian
longitude sector during March-April 2023, Astrophys. Space Sci., vol.369, no.1, 3, 2024.


